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Unit-I 

Thermodynamics  

Entropy  

• We will introduce a new thermodynamic function, entropy (S),  that is dependent 

on heat flow between the system and surroundings and temperature. It will be used 

to determine spontaneity.  

• Entropy is a function of state (does not depend on the path)  

• Entropy is an additive function : the entropy of a universe is a sum of entropies of 

a system and its surroundings: 

 Suniv = Ssys + Ssur , ∆Suniv = ∆Ssys + ∆Ssur 

 If surroundings are much larger than the system then  

Tsur≈ const and we define the change of entropy in surroundings as: 

 ∆Ssur = qsur/Tsur (qsur = - qsys) 

 

 Spontaneous process: the system is far from equilibrium and the process is 

directed towards the equilibrium: infinitesimal action cannot stop the 

process. 
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  Non-spontaneous process: improbable. Non-spontaneous process may 

become spontaneous only by redefining a universe, e.g. including in a 

universe something that can change equilibrium.  

 Reversible process: the system is at equilibrium: infinitesimal action can 

move the process in any direction from the equilibrium (extremely 

important for determination ∆Ssys). 

Free Energy (Gibbs Function, G) 

We can multiply both parts of the last expression by T: T ∆ Suniv = T ∆S - ∆H = - 

( ∆H - T ∆S) Definition: Free energy function is: G = H - T S Free energy change 

is: ∆ G = - T ∆ Suniv = ∆H - T ∆S ∆G connects the change of entropy in the 

universe, ∆ Suniv, with thermodynamic parameters of the system only, ∆H, ∆S, 

and T. 

∆G can be used to determine spontaneity From ∆G = - T∆Suniv the sign of ∆G is 

opposite to that of ∆Suniv. Therefore, the following criteria can be used to 

determine spontaneity of a process: 
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Entropy as a measure of unavailable energy 

  

When a quantity of heat is supplied to a work  substance, a portion of this energy is used for 

doing work, this portion of energy is called available energy and the remaining portion of energy 

is called unavailable energy. 

The entropy is a measure of unavailable energy which may be written as, 

Unavailable energy = Entropy x Temperature 

                                = SxT 

To show that, Entropy as a measure of unavailable energy of a system 

 

 

 
Consider two reservoirs of heat at a temperature T1 and T2 

(T1>T2) respectively and a sink at a temperature T. 

Let there be a reversibility between the source-1 and sink T. 

Let Q calories of heat flows into engines, maximum amount of 

work obtained is given by, 

 

𝑊1 = [
𝑇1−𝑇

𝑇1
] or 𝑄 [1 −

𝑇

𝑇1
]   -----1 
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Now let us transfer Q calories of heat from source I to II and then to the engine, now as the 

engine works between T2 and T1 

Maximum work obtained is given by  

𝑊2 = 𝑄 [1 −
𝑇

𝑇2
] ------2 

 

W1>W2 as T1>T2 

Due to the flow of heat from source I to II amount of unavailable work is given by W1-W2. 

∆W= W1-W2 

=𝑄 [1 −
𝑇

𝑇1
] −  𝑄 [1 −

𝑇

𝑇2
] 

= [𝑄 −
𝑇𝑄

𝑇1
− 𝑄 +

𝑇𝑄

𝑇2
] 

∆W=𝑇𝑄 [
1

T2
−

1

T1
] 

∆W=𝑇𝑄 [
𝑇1−𝑇2

𝑇2𝑇1
]-----3 

Due to the flow of heat from source I to II, The change in entropy is given by 

∆S=[
𝑄

T2
−

𝑄

T1
] 

=𝑄 [
1

𝑇2
−

1

𝑇1
] 

= 𝑄 [
𝑇1−𝑇2

𝑇1𝑇2
]----4 

Dividing equation 3 by 4 

∆W

∆S
= 𝑇𝑄 [

𝑇1 − 𝑇2

𝑇2𝑇1
] 𝑋 [

𝑇1𝑇2

𝑇1 − 𝑇2
] 

∆W

∆S
= 𝑇 

∆W = T∆S--------5 

This is the entropy and work relationship equation to measure the unavailable energy.  
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Entropy change during a spontaneous process 

o During any spontaneous process, entropy of the system increases, this can be 

mathematically established as follows. 

 

o Consider two vessels separated by stopper containing 1 mole of an ideal gas, enclosed in 

a vessel of volume V1,being connected to another vessel having volume V2. 

 

o On opening stop cark,the gas in vessel A spontaneously flows into vessel B for this 

process, we have an entropy change as  

𝑑𝑆 =
𝑑𝑞

𝑇
--------1 

WKT, dq= dE+Pdv 

At isothermal conditions dT=0 {dE=Cv.dt, dt=0 and dE=0} 

dS =
dE+pdv

T
---------2 

For 1 mole of an ideal gas PV=RT 

P= 
𝑅𝑇

𝑉
 

Substitute P value into eqn.2 

dS = dE +
dv

v
𝑅  ------------3 

Since dE=0 

                                                dS=R 
dv

v
--------4 

Total change in entropy during spontaneous isothermal change, when its volume changes from 

V2            V1+V2 is given by 

δS=∫ 𝑅
𝑣2

𝑣1

𝑑𝑣

𝑣
---------5 

∆S= R ln
𝑣1+𝑣2

𝑣1
--------6 

As V1+V2  is greater than V1 ie V1+V2>> V1 

dS>0     Therefore ∆S>0, 



 

6 
 

So, Entropy of system increases during spontaneous process. 

As all process occurring in nature are spontaneous process, the entropy of universe must be 

continuously increasing. 

 

Helmholtz and Gibbs Free energy change: 

A= E-T.S------------------1 

G=H-T.S-------------------2 

A and G are the differential and state functions for a reversible cyclic 

process 

∮ 𝑑𝐴 = 0-------3 

∮ 𝑑𝐺 = 0-------4 

Relation between A &G 

G= H-T.S 

G=E+PV-T.S 

G=E-T.S+PV 

G=A+PV--------5 

Free energy functions for isothermal conditions change in G, when a 

system changes from one state to another under isothermal T=0, 

∆G=G2-G1 

=(H2-T S2)-(H1-TS1) 

=H2-H1-T(S2-S1) 

= ∆H-T∆S 

Thus, for infinite change, under dT=0 

G=H-T.S--------6 

dG=dH-T.dS-S.dT 
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dG=dH-T.dS--------7 

Similarly 

A=E-T.S 

dA=dE-T.dS--------8 

∆A=∆E-T∆S--------9 

Substract equation 9 from 7 

dG-dA=dH-dE or ∆G-∆A =∆H -∆E       

{∆H= ∆E+P∆V, ∆H-∆E=P∆V} 

∆G=P∆V+∆A 

∆G= ∆A +P∆V----------10 

In reversible process ∆S=  
Qrev

T
, substitute ∆S to eqn. 9 

∆A=∆E-T∆S 

∆A=∆E-Qrev ------------------11 

∆E-Qrev= -Wrev  ---------------12    (According to 1st law of TD) 

Substitute equation 12 in 11 

∆A= −Wrev   or  -∆A= Wrev--------------------13 

WKT 

∆G= ∆A +P∆V 

∆G=−Wrev + P∆V 

-∆G= Wrev + P∆V---------------------14 

(Gibbs free energy Network function) 
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In a reversible process, the decrease in free energy (-∆G) is equal to Net 

work done. 

WKT, 

dA=dE-T.dS –S.dT-------------------15 

We have , dS = 
dq

T
  = dE+ 

PdV

T
 

T.dS= dE+ PdV 

dE-T.dS=-PdV 

In Equation 15 

dA= - PdV-S.dT----------------16 

dG=VdP-SdT---------17 

Effect of P,V,T on free energy change 

Similarly, Effect of T,P,V on free energy. 

i) For isothermal condition,dT=0 

 

Equation 16 dA= - Pdv   or    (
𝜕𝐴

𝜕𝑉
)

𝑇
= -P  --------18 

 

Equation 17 dG=VdP      or    (
𝜕𝐺

𝜕𝑃
)

𝑇
= V----------19 

ii) For isobaric condition (dP=0) 

 

dA= - SdT     or      (
𝜕𝐴

𝜕𝑇
)

𝑃
= -S 

dG = -S.dT     or     (
𝜕𝐺

𝜕𝑇
)

𝑝
= -S    ------------------20 

iii) For isochoric process dv=0 

dA=-S.dT    or   (
𝜕𝐴

𝜕𝑇
)

𝑉
= -S----------------21 
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(
𝜕𝐴

𝜕𝑇
)

𝑉
= 

A−E

T
      or    

A−E

T
                     {A=E-T.S, -S=

A−E

T
} 

Comparing equation 20 and 21 

 

(
𝜕𝐴

𝜕𝑇
)

𝑉
 =  (

𝜕𝐺

𝜕𝑇
)

𝑝
 

 

Helmholtz and Gibbs energies as criteria of spontaneity and equilibrium, 

their variations with P,V and T. 

o We have seen earlier that the net entropy change of a process determines 

whether the process would proceed irreversibly (i.e., spontaneously) or not. 

 

o If there is net increase in the entropy of the system and the surroundings 

taken together, the process would proceed irreversibly, i.e., it would be 

thermodynamically feasible.  

 

 

o If there is no net change in the entropy of the system and the surroundings 

put together, the process will be reversible, i.e., the system will remain in a state of 

equilibrium. 

 

o We can express the criteria for reversibility and irreversibility in terms of 

entropy of the system (alone) as well as in terms of other fundamental 

thermodynamic properties, namely U, H, A and G. 

 

 

o It was stated earlier that change of entropy for a given change of state is 

definite quantity, independent of the fact whether the change is brought about 

reversibly or irreversibly. But, mathematically, it is given (for a small change) by 

the equation 

 

o The state of equilibrium is represented by a balance of driving and opposing 

forces, and the system is incapable of undergoing any change in this state. 

 

o Thus the gradients of temperature, pressure and volume are zero at 

equilibrium. 
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                                 i.e dT = 0 = dP = dV 

 

We shall consider the two cases below. 

(i) Criteria for equilibria at constant T and V, under this condition the equilibrium 

condition can be expressed in terms of Helmholtz free energy A. 

A = E-T S 

dA = dE – T.dS –S dT 

But for a reversible process 

dE =  dqrev –PdV = T dS – PdV 

 

Therefore, dA= -SdT –PdV------------1 

 

At constant temperature and volume  

(dA)T,V = 0  

For finite changes we will have 

 

(∆A)T,V =0-------------------------------2 

 

In an irreversible process (Spontaneous changes) the work done by the system is less 

then that in a reversible process.  

 

i.e.,  (PdV)irr < PdVrev ---------------3 

Equation (2) for irreversible process can be written as 

 

dA< (SdT + P dVirr) 

At constant T and V, dT=0=dV, 

(dA)T,V < 0 

For spontaneous process 

 

For finite changes 

(∆A)T,V < 0-----------------------4 

 

Thus spontaneous processes are accompanied by a decrease of work function and this function 

does not change at equilibrium. 
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This can be restated in the following form: 

“The Helmholtz free energy decreases in natural (Spontaneous) Processes.When it reaches a 

minimum value, the system reaches equilibrium”. 

 

This statement is obvious from the definition of  A= E-TS 

Since at equilibrium E is minimum and S is maximum naturally the difference must be a 

minimum. 

 

ii) Criteria for equilibrium at constant T and P. 

 

For this case we consider the Gibbs free energy function. 

G= H- T.S 

G=E+PV – T S 

Diff. 

dG=dE+PdV + Vdp – TdS – SdT---------------5 

 

For a reversible change  

dE= TdS – PdV----------------------------6 

Subtract equation 5 in 6 

Therefore, dG= -SdT + VdP--------------7 

 

At constant temperature and pressure dT=0=dP 

And (dG)T,P = 0 

For finite changes 

(∆G)T,P=0-------------------------------------8 

 

For irreversible (Spontaneous) changes 

TdS > dqirr 

dqirr-TdS >0 

dE+PdVirr –TdS < 0----------------------9 

TdS > dE + PdVirr------------------------10 

 

From equation 7 and 9, we get  

dG < -SdT + VdP + (dE+ P dVirr – T dS) 
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At const. T and P for an isolated system 

(dG)T,P < 0 

For finite changes 

(∆G)T,P < 0 

 That is, all spontaneous processes taking place at content temperature and Pressure are 

accompanied by a decrease in free energy and for a system in equilibrium the free energy must 

be minimum. 

 

 For Spontaneous process the free energy decreases and the spontaneous processes have 

tendency to attain the stable of equilibrium. 

 

 Once equilibrium has been attained under a given set of conditions, the properties of 

system will not change any more with time. 

 

 Any quantity which is decreasing must attain its minimum value beyond which it can not 

change with time. So at equilibrium the free energy must be minimum.   

 

Property Sign Nature of the Process 

(∆G)T,P        -Ve Spontaneous  

Or zero Equilibrium 

(∆A)T,V +Ve Spontaneous in reverse 

direction 

 

Why is reversible work done is greater than irreversible work. 

Isothermal reversible work of expansion is always greater than that of irreversible expansion of 

an ideal gas. 

Reversible work of expansion Wrev = nRT ln 
P1

P2
 

On adding and subtracting one we get 

Wrev = nRT ln1 − 1 +
P1

P2
 

          = nRT [1-(1-
P1

P2
)] 



 

13 
 

[ln (1-x)= -x-1/2 x2] = -x ] for small changes 

Wrev = - nRT [
P1

P2
− 1]-----------1 

Irreversible work for expansion 

Wirv = nRT [1-
P2

P1
]--------------2 

Comparing equation 1 and 2, we get 

Wrev – Wirv = nRT [
P1

P2
− 1]- nRT [1-

P2

P1
] 

                   = nRT [
P1

P2
− 2 + 

P2

P1
] 

Wrev - Wirv = nRT [
𝑃1

2− 2P1P2 + P2
2

𝑃1𝑃2
] 

Wrev - Wirv = 
nRT

P1P2
(P1 − P2)----------3 

Since (P1 –P2)2 are always a +ve quantity therefore RHS of equation 3 

is +ve irrespective of the fact whether P1 is greater than or less than P2. 

Thus LHS of the equation 3 should also be a +ve quantity and hance 

(Wrev - Wirv) > 0 and  Wrev > Wirv for isothermal expansion of an ideal 

gas. 

 

 

 

 

 

 

 

 



 

14 
 

 

 

 

Maxwell’s relations 

These are extensively used particularly for the systems in equilibrium.  

Maxwell relation’s -1 

From first law of thermodynamics  

dq = dE+ PdV--------------1 

dE = dq – Pdv--------------2 

Wks  dS =
dq

T
  

dq= T.dS ------------------3 

Equation 2 dE = T.dS – PdV------4 

At constant volume, dV=0 

dE= T.dS  or  (
𝜕𝐸

𝜕𝑆
)

𝑉
= T ---------5 

At  constant entropy dS=0 

dE= - PdV    or    (
𝜕𝐸

𝜕𝑉
)

𝑆
 = -P ---------6 

Differentiating equation 5 w r t  V at dS = 0  and equation 6 w r t S at dV= 0 

Eqn. 5. 
𝜕2 𝐸

𝜕𝑉𝜕𝑆
= (

𝜕𝑇

𝜕𝑉
)

𝑆
-----------------7 

Eqn. 6. 
𝜕2 𝐸

𝜕𝑉𝜕𝑆
= − (

𝜕𝑃

𝜕𝑆
)

𝑉
--------------8    

Compare equation 7 and 8 

(
𝝏𝑻

𝝏𝑽
)

𝑺
= − (

𝝏𝑷

𝝏𝑺
)

𝑽
---------A 

Maxwell relation’s -2 

H= E + PV --------------1 

Differentiating equation 1 
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dH = dE + PdV + VdP ---------2 

 W k t  dS =
dq

T
 

dq= T.dS ---------3 

dH = dq + V dP  

dH = T.dS + V.dP --------4 

dP = 0  , dH = T.dS 

(
𝜕𝐻

𝜕𝑆
)

𝑃
=   𝑇 -----------5 

dS= 0 

dH= V dP  

(
𝜕𝐻

𝜕𝑆
)

𝑃
= 𝑉------------6 

Differentiating equation 5 w r t  P  at dP  = 0  and equation 6 w r t S at dS= 0 

∂2 H

∂S ∂P
= (

∂T

∂P
)

S
-------------7 

𝜕2 𝐻

𝜕𝑃𝜕𝑆
= (

𝜕𝑉

𝜕𝑆
)

𝑃
----------------8 

Compare equation 7 and 8 

(
𝛛𝐓

𝛛𝐏
)

𝐒
 = (

𝝏𝑽

𝝏𝑺
)

𝑷
----------------B 

 

Maxwell relation’s -3 

A= E- T.S -------------1 

Differentiating equation 1 

dA = dE – T dS – S.dT --------2 

W k t   dS =  
dq 

T
  

    dE+PdV

T
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T.dS =  dE + PdV ---------3 

Equn. 2 

 dA = dE – dE – PdV – S.dT 

dA = -PdV – S dT ---------4 

dV=0 

dA = - SdT 

(
∂A

∂T
)

V
 = - S --------5 

dT=0 

dA = - PdV 

(
∂A

∂V
)

T
 = - P ---------6 

Differentiating equation 5 w r t  T  at dT= 0 and equation 6 w r t V  at dV  = 0    

𝐸𝑞𝑛. 5  
∂2 A

∂T ∂V
= (

∂S

∂V
)

𝑇
---------------7 

 

 

𝐸𝑞𝑛. 6  
∂2 A

∂T ∂V
= − (

∂P

∂T
)

𝑉
-----------------8 

 

Compare equation 7 and 8 

− (
𝛛𝐏

𝛛𝐓
)

𝐕
 = (

𝝏𝑺

𝝏𝑽
)

𝑻
----------------C 

 

Maxwell relation’s -4 

G = H – T.S --------1 

G = E + P. V - T.S   --------2 
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Differentiating equation 2 

dG = dE + P dV + V dP – T.dS – S dT 

W k t   dS =  
dq 

T
  

    dE+PdV

T
 

 

TdS = dE + PdV ----------------3 

dG = T dS + VdP –TdS – SdT 

dG = VdP – S dT -------------4 

dP =0 

dG = -SdT 

(
∂G

∂T
)

P
 = - S ----------5 

dT=0 

dG=VdP 

(
∂G

∂P
)

T
 = V  -------6 

Differentiating equation 5 w r t  P   at dP= 0 and equation 6 w r t T  at dT  = 0    

 

𝐸𝑞𝑛. 5  
∂2 G

∂P ∂T
= − (

∂S

∂P
)

𝑇
---------------7 

 

𝐸𝑞𝑛. 6  
∂2 G

∂P ∂T
= (

∂V

∂T
)

𝑃
-----------------8 

 

Compare equation 7 and 8 

(
𝛛𝐕

𝛛𝐓
)

𝐏
 = − (

𝝏𝑺

𝝏𝑷
)

𝑻
----------------D 
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Application of Maxwell’s Relations 

The Four Maxwell relations have a very wide range of applications . They apply to all kind of 

substances (solids, liquids, gases)under all type of conditions of Pressure, volume and 

temperature.  Before Discussing applications  

1. Cooling Produced By Adiabatic Expansion of Any Substance 

In adiabatic  process entropy S remains constant. Therefore by considering 

 the Thermodynamic relation  

 

We can prove 

 

Most of the substances  expand on heating , they have +ve beta value.        Will be –ve 

i.e all the substances will cool down. A few substances like rubber have –ve beta value.  

They will get heat up..  

 2. Adiabatic Compression of A Substance 

 By considering  the Thermodynamic relation  

  

 

We can prove   

  

Above result shows that if         is +ve, then adiabatic increase in pressure  

causes the temprature to rise.  

Similarily using other maxwell’s equations we can explain the stretching  

of wires and thin films  

3. Change of internal energy with Volume,  

Using the third Maxwell’s relation 

 

VS S

p

V

T


























vmC

Tp
T




T

pS S

V

p

T


























p
C

TV
T






T v

T v

s P

v T

u P
T P

v T

    
   

    

    
    

    
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20 
 

  

4. Cp – Cv = R for ideal gases. 

Other relations for the specific heats are given below. 

 

where  is the volume expansivity and  is the isothermal compressibility, defined as 
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The difference Cp – Cv  is equal to R for ideal gases and to zero for incompressible substances (v = 

constant). 

5. Variation of  Cv with specific volume. 

 

5. Variation of  Cv of an ideal gas does not depend upon specific volume. 

For an ideal gas 

 

 

Therefore, the specific heat at constant volume of an ideal gas is independent of specific volume.  

For Vander Waal’s gas also it is independent of volume. 

6. Change of state and clapeyron’s equation 

In ordinary phase transition of matter(solid phase to liquid phase, liquid to vapour, and solid to 

vapour) take place under constant temperature and pressure. During the transition a certain 

amount of heat, known as latent heat must be supplied to the substance for a change of phase.  
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During this change temperature remains constant.  

Therefore using Maxwell relation 

 

 

 

 

 

This equation is known as Clausius-Clapeyron’s latent heat Equation. 

Partial Molar properties 

Some thermodynamic properties like entropy, enthalpy, internal energy, etc., are known as 

extensive properties because their values change by varying mass of the system. In many 

thermodynamic equations, the change of state was due to variation of temperature and pressure 

only. Accordingly, it was assumed that in the case of a closed system there is no change in mass 

of the system, while in the case of an open system containing two or more components, the 

number of moles of various components can also be changed. In such case, the extensive 

property (X) must be function of number of moles of various components of the system, in 

addition to temperature and pressure of the system. 

Expression of Partial molar quantity Suppose the temperature of the system be T and pressure be 

P and n1, n2,n3 ....... j  be the corresponding number of moles of the components 1, 2, 3, ….., j. 

Thus accordingly the property X must be the function of temperature, pressure and the number 

of moles of the various components of the system, i.e., 

X= f(T,P,n1,n2,n3,…..nj)-----------------1 

 The total number of moles N = Thus change in property dX when the temperature, pressure and 

number of moles change will be: dX= (
𝜕𝑋

𝜕𝑇
)

𝑃,𝑁
dT + (

𝜕𝑋

𝜕𝑃
)

𝑇,𝑁
dP + (

𝜕𝑋

𝜕𝑛1
)

𝑇,𝑁,𝑛2…𝑛𝑗
dn1  + 

(
𝜕𝑋

𝜕𝑛2
)

𝑇,𝑃,𝑛1,𝑛3…𝑛𝑗
dn2------------------2 

This quantity (
𝜕𝑋

𝜕𝑛1
)

𝑇,𝑁,𝑛2…𝑛𝑗
dn1   is called the partial molar property of the ith component. This 

is also represented as 𝑋̅𝑖. Thus partial molar property may be defined as a thermodynamic 

quantity, which shows that an extensive property of a solution or mixture changes with the 

change in the molar composition of the solution, while keeping the temperature and pressure 
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constant. It is a partial derivative of the extensive property with respect to the amount of the 

component of interest. Each extensive property of a mixture has its corresponding partial molar 

property. Thus for any component (say ith) component of a system: 

 

Thus, for the ith component in a system 

Partial molar internal energy = (
𝜕𝑈

𝜕𝑛𝑖
)

𝑇, 𝑃,𝑛1,𝑛2,𝑛3…=𝑈𝑖 
 

Partial molar enthalpy = (
𝜕𝐻

𝜕𝑛𝑖
)

𝑇, 𝑃,𝑛1,𝑛2,𝑛3…=𝐻̅𝑖 
 

Partial molar entropy  = (
𝜕𝑆

𝜕𝑛𝑖
)

𝑇, 𝑃,𝑛1,𝑛2,𝑛3…=𝑆̅𝑖 
 

Partial molar volume  = (
𝜕𝑉

𝜕𝑛𝑖
)

𝑇, 𝑃,𝑛1,𝑛2,𝑛3…=𝑉𝑖 
--------------------------3 

Physical significance of Partial molar quantity The quantity X i represents the actual value of X 

per mole of the ith component of the system.  

This value may be same or different from the actual molar value X* in the pure state.  

These two values i.e. partial molar value and actual molar value are same in the case of ideal 

systems.  

While in the case of non-ideal systems, these two values are different because of the interactions 

between the constituents, i.e., actual molar value get modified to partial molar value.  

This partial molar value may not be same throughout the whole solution since the extent of 

interactions vary according to the amount of the constituents in the system.  

Hence the partial molar value is dependent on the composition of the system.  

Therefore, the partial molar quantities are meant for the individual components of the system, 

but their values are not only dependent on the nature of the particular component in 

consideration but also on the nature and amounts of the other components of the system.  
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 Partial molar volume 

 The partial molar volume of a substance (say ith component) in a mixture is the change in 

volume per mole of substance ‘i’ added to a large volume of the mixture. In the case of ideal 

solution, the partial molar volume of the ith component will be equal to its molar volume in the 

pure state, whereas in the case of non-ideal solution the partial molar volume is the molar 

volume actually occupied by the substance in a solution of known composition. The partial 

molar volume of constituents of the mixture changes with the composition. As the partial molar 

volume is the actual molar volume of the component present in the solution of known 

composition therefore the total volume of solution will be given as: 

𝑉𝑡𝑜𝑡𝑎𝑙 = 𝑛1𝑉1, + 𝑛2𝑉2,-----------------------4 

Determination of Partial Molar Volumes (For two component system) The values of partial 

molar volumes of the components of the solution can be determined by various methods. A 

direct method to measure 𝑉1,𝑝𝑚 (partial molar volume of component 1) is to measure the volume 

of the solutions which is formed by adding different amount of component 1 in a definite amount 

of component 2. Then a graph is plotted between volume of solution and amount of component 

1. At the given composition of the solution, the slope of the line at that composition gives partial 

molar volume of the component 1. But better method for determining the partial molar volumes 

is the intercept method. 

 

Determination of partial molar volume by Intercept method  

Assuming Vm,mix be the volume of mixture consisting of total of one mole of the two 

components.  

Thus, we can write it as 𝑉𝑚.𝑚𝑖𝑥 = 
𝑉

𝑛𝐴+𝑛𝐵
 

In the above expression, V stands for the volume of the mixture consisting the amounts n1 and n2 

of the corresponding components 1 and 2. Under constant temperature and pressure the partial 

molar volume can be written as: 

𝑉1,𝑝𝑚 = (
𝜕𝑉

𝜕𝑛1
)

𝑛2

= (
𝜕(𝑛1+𝑛2) 𝑉𝑚,𝑚𝑖𝑥

𝜕𝑛1
)

𝑛2

--------------1 

After undergoing the differentiation, the expression becomes: 

=𝑉𝑚,𝑚𝑖𝑥 + (𝑛1 + 𝑛2) (
𝜕𝑉𝑚,𝑚𝑖𝑥

𝜕𝑛1
)

𝑛2

--------------------2 

Since the total mole fraction of the system is equal to 1, i.e., x1 + x2=1, Thus the total molar 

volume Vm,mix at specified temperature and pressure will be the function of only one of the mole 

fraction terms. 
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𝑉𝑚,𝑚𝑖𝑥 = 𝑓(𝑥2)  

Taking differential of the above expression: 

𝑑𝑉𝑚,𝑚𝑖𝑥 = (
𝑑𝑉𝑚,𝑚𝑖𝑥

𝑑𝑥2
) 𝑑𝑥2--------------3 

Now dividing the equation by dn1 and taking n2 be constant, we get 

(
𝜕𝑉𝑚,𝑚𝑖𝑥

𝜕𝑛1
)

𝑛2

=  (
𝑑𝑉𝑚,𝑚𝑖𝑥

𝑑𝑥2
) (

𝜕𝑥2

𝜕𝑛1
)

𝑛2

-----------4 

Since the mole fraction is given by 

𝑥2 =
𝑛2

𝑛1+𝑛2
----------------5 

Thus for expression, (
𝜕𝑥2

𝜕𝑛1
)

𝑛2

we can write 

(
𝜕𝑥2

𝜕𝑛1
)

𝑛2

=  −
𝑛2

(𝑛1+𝑛2)2------------6 

Substituting equation 5 in 6 we get: 

(
𝜕𝑥2

𝜕𝑛1
)

𝑛2

= −
𝑥2

(𝑛1+𝑛2)
 -------------7 

Substituting equation 7 in equation 4 we get: 

(
𝜕𝑉𝑚,𝑚𝑖𝑥

𝜕𝑛1

)
𝑛2

=  (
𝑑𝑉𝑚,𝑚𝑖𝑥

𝑑𝑥2
) (−

𝑥2

(𝑛1+𝑛2)
)  -------------8 

Putting this expression in equation (2), we get: 

𝑉1,𝑝,𝑚 = 𝑉𝑚,𝑚𝑖𝑥 − 𝑥2 (
𝑑𝑉𝑚,𝑚𝑖𝑥

𝑑𝑥2
)----------------9 

Or 

𝑉𝑚,𝑚𝑖𝑥 = 𝑉1,𝑝,𝑚 + 𝑥2 (
𝑑𝑉𝑚,𝑚𝑖𝑥

𝑑𝑥2
)   -----------------10 

Similarly for second component, the partial molar volume will be given by: 

𝑉𝑚,𝑚𝑖𝑥 = 𝑉2,𝑝,𝑚 + 𝑥1 (
𝑑𝑉𝑚,𝑚𝑖𝑥

𝑑𝑥1
)--------11 

The above equations represent tangent line drawn to the plot of 𝑉𝑚,𝑚𝑖𝑥 versus 𝑥2 (taking equation 

10) with the intercept equal to 𝑉1,𝑝𝑚and accordingly the slope of the line is (
𝑑𝑉𝑚,𝑚𝑖𝑥

𝑑𝑥2
) Similarly 

the plot is drawn between 𝑉𝑚,𝑚𝑖𝑥 and 𝑥1 in which the intercept becomes 𝑉2,𝑝𝑚 and slope is 

(
𝑑𝑉𝑚,𝑚𝑖𝑥

𝑑𝑥1
) Both the equations given above represent a single plot because x1 + x2 = 1.  
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This plot is shown in the figure given below 

 

 

 

 

 

 

 

 

 

Equation 10 and 11 are valid for any extensive property Y (V,G, U,S,A,H) of the mixture. 

Thus generalized equation is can be written as 

𝑌𝑚,𝑚𝑖𝑥 = 𝑌1,𝑝,𝑚 + 𝑥2 (
𝑑𝑌𝑚,𝑚𝑖𝑥

𝑑𝑥2
) ---------------12 

 

𝑌𝑚,𝑚𝑖𝑥 = 𝑌2,𝑝,𝑚 + 𝑥1 (
𝑑𝑌𝑚,𝑚𝑖𝑥

𝑑𝑥1
) ---------------13 
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Problems on free energy 

2.  

Free energy changes may also use the standard free energy of formation (ΔG∘f)(ΔGf∘), for each 

of the reactants and products involved in the reaction. The standard free energy of formation is 

the free energy change that accompanies the formation of one mole of a substance from its 

elements in their standard states. Similar to the standard enthalpies of 

formation, (ΔG∘f)(ΔGf∘) is by definition zero for elemental substances under standard state 

conditions. The approach to computing the free energy change for a reaction using this approach 

is the same as that demonstrated previously for enthalpy and entropy changes. For the reaction. 
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3.  
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Chemical Potential:  The partial molar gibbs free energy has been given a 

specific symbol 𝜇 because of its univerasality in dealing with various aspects of 

thermodynamics studies. Its signifecance is discussed here. For a multicomponent 

system, free energy is a function of T,P and number of moles (ni) of various specis. 

Thus, G= 𝑓(𝑇, 𝑃, 𝑛1, 𝑛2, … 𝑛𝑖)  

And 𝑑𝐺 =  (
𝜕𝐺

𝜕𝑇
)

𝑃,𝑛1,𝑛2

dT  + (
𝜕𝐺

𝜕𝑃
)

𝑇,𝑛1,𝑛2

dP + (
𝜕𝐺

𝜕𝑛1
)

𝑇,𝑃,𝑛2

𝑑𝑛1 + ⋯   

 

             = (
𝜕𝐺

𝜕𝑇
)

𝑃,𝑛1,𝑛2

dT  + (
𝜕𝐺

𝜕𝑃
)

𝑇,𝑛1,𝑛2

dP + 𝐺1
̅̅ ̅  d𝑛1 + 𝐺2

̅̅ ̅  d𝑛2  +….. -----(1) 

                Where   

                        𝐺1
̅̅ ̅ = (

𝜕𝐺

𝜕𝑛𝑖
)

𝑇,𝑃,𝑛𝑗  

= 𝜇𝑖,    𝑗≠𝑖
  --------(2) 

𝜇𝑖 = Chemical potential of the component i in the system and is defined as the 

change in the Gibbs free energy with the change in the number of moles of 

component i when T and P and the moles of other components are kept constant. 

It is intensive property and is a meassure of escaping tendency. 

For a closed system 𝑑𝑛1 = 0, 𝑑𝑛2 = 0 and equation (1) gives 

(𝑑𝐺)𝑁 =  (
𝜕𝐺

𝜕𝑇
)

𝑃,𝑛𝑖

𝑑𝑇 +  (
𝜕𝐺

𝜕𝑃
)

𝑇,𝑛𝑖

𝑑𝑃----------(3) 

But for a closed system  

dG= -SdT + VdP -----------(4) 

Comparing the coefficient in the equation (3) and (4) we get, 

(
𝜕𝐺

𝜕𝑇
)

𝑃
=  −𝑆, (

𝜕𝐺

𝜕𝑃
)

𝑇
= 𝑉----------(5) 

From the equation (1),(2) and (5) we have  

dG = -S dT + V dP + 𝜇1 𝑑𝑛1 + 𝜇2𝑑𝑛2 + ⋯  

     = -SdT + Vdp+ ∑ 𝜇𝑖𝑑𝑛𝑖𝑖    ---------(6) 
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For constant T and P; dT=0 and dP=0 and  

dG = ∑ 𝜇𝑖𝑑𝑛𝑖𝑖  

      = 𝜇1𝑑𝑛1+𝜇2𝑑𝑛2 + ….   -------(7) 

Equation (7) can be integrated for a constant composition system to give 

G= 𝜇1𝑛1+𝜇2𝑛2 +---------- =  ∑ 𝜇𝑖𝑑𝑛𝑖𝑖    ---------(8)  

(Chemical Potential) 

The total differencial of G is given by  

dG = 𝜇1𝑑𝑛1+𝑛1𝑑𝜇1 + 𝑛2𝑑𝜇 2+𝜇2𝑑𝑛2-----------(9) 

 Comparing equn. (6) and (9) we get 

-S dT + VdP + ∑ 𝜇𝑖𝑑𝑛𝑖𝑖  = 𝜇1𝑑𝑛1+𝑛1𝑑𝜇1 + 𝑛2𝑑𝜇 2+𝜇2𝑑𝑛2 

                                       = 𝜇1𝑑𝑛1 + 𝜇2𝑑𝑛2 + 𝑛1𝑑𝜇1 + 𝑛2𝑑𝜇 2 

   -S dT + VdP + ∑ 𝜇𝑖𝑑𝑛𝑖𝑖   = ∑ 𝜇𝑖𝑑𝑛𝑖𝑖 + ∑ 𝑛𝑖𝑑𝜇𝑖𝑖  

Terms getting cancel and we get 

   -S dT + VdP    =   ∑ 𝑛𝑖𝑑𝜇𝑖𝑖  

Or         -S dT + VdP - ∑ 𝑛𝑖𝑑𝜇𝑖𝑖  = 0-------- (10) 

Equation (10) is the Gibbs- Duhem equation, 

For an isothermal and isobaric process eqn. (10) reduces to  

∑ 𝑛𝑖𝑑𝜇𝑖𝑖  = 0 

 

Variation of temperature on chemical potential  

Chemical potential of  i th component of a system is defined as  

 𝜇𝑖   =  (
𝜕𝐺

𝜕𝑛𝑖
)

𝑇,𝑃,𝑛𝑗  

--------(1) 

Differenciating equation(1) wrt T at constant P and composition we get 



 

31 
 

(
𝜕𝜇𝑖

𝜕𝑇
)

 𝑃,𝑛𝑖 

=  
𝜕

𝜕𝑇
[(

𝜕𝐺

𝜕𝑛𝑖
)

𝑇,𝑃,𝑛𝑗  

]

𝑃,𝑛𝑖

 

Since G is a state function 

𝜕2𝐺

𝜕𝑇𝜕𝑛𝑖
 =  

𝜕2𝐺

𝜕𝑛𝑖𝜕𝑇
 

∴ (
𝜕𝜇𝑖

𝜕𝑇
)

 𝑃,𝑛𝑖 

= 
𝜕

𝜕𝑛𝑖
[(

𝜕𝐺

𝜕𝑇
)

 𝑃,𝑛𝑖  

]
𝑇,𝑃,𝑛𝑗

 

                    =  −
𝜕

𝜕𝑛𝑖

(𝑆)𝑇,𝑃,𝑛𝑗
= −𝑆𝑖̅--------- (2) 

Where 𝑆𝑖̅ = (
𝜕𝑆

𝜕𝑛𝑖
)

 𝑇,𝑃,𝑛𝑗

= Partial molar entropy. 

From equation (2) it is clear that the chemical potential will decrease with increase 

temperature as entropy is always a positive quantity. However the rate of change of 

chemical potential with temperature is different for the gases ,liquids and solids as, 

                𝑆𝑔 > 𝑆𝑙 > 𝑆𝑠. 

 

 

Variation of  Pressure on chemical potential ;  

Chemical potential of  i th component of a system is defined as  

 𝜇𝑖   =  (
𝜕𝐺

𝜕𝑛𝑖
)

𝑇,𝑃,𝑛𝑗  

--------(1) 

Differenciating equation(1) wrt P  at constant T and composition we get            

              (
𝜕𝜇𝑖

𝜕𝑃
)

 𝑇,𝑛𝑖 

=  
𝜕

𝜕𝑃
[(

𝜕𝐺

𝜕𝑛𝑖
)

𝑇,𝑃,𝑛𝑗  

]

𝑇,𝑛𝑖

 

 

Since G is a state function 
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𝜕2𝐺

𝜕𝑃𝜕𝑛𝑖
 =  

𝜕2𝐺

𝜕𝑛𝑖𝜕𝑃
 

 

              (
𝜕𝜇𝑖

𝜕𝑃
)

 𝑇,𝑛𝑖 

=  
𝜕

𝜕𝑛𝑖
[(

𝜕𝐺

𝜕𝑃
)

𝑇,𝑛𝑖 

]
𝑇,𝑃,𝑛𝑗

 

                              = (
𝜕𝑉

𝜕𝑛𝑖
)

𝑇,𝑃,𝑛𝑗 

=  𝑉𝑖̅  

                      
𝑑𝜇𝑖

𝑑𝑃
= 𝑉𝑖̅          

                      d𝜇𝑖 = 𝑉𝑖̅ dP  ---------- (2) 

Where 𝑉𝑖̅  = Partial molar volume of ith component . Equation (2) can be integrated 

for suitable limits , 

       ∫ 𝑑𝜇𝑖 = ∫ 𝑉𝑖̅ dP  -------------(3) 

Equation (3) can be used to calculate the chemical potential of the gases, liquids 

and solids , provide  we know the pressure dependence of volume. 

 

 The Duhem-Margules Equation :  

 For a system consisting of a liquid solution of two components equilibrium with 

their vapors, At constant temperature and pressure, the condition for an 

infinitesimal change of compoition is given by the Gibbs –Duhem equation in the 

form; 

      𝑛1𝑑𝜇1 + 𝑛2𝑑𝜇 2 = 0  -----------(1) 

Where 𝑛1 𝑎𝑛𝑑 𝑛2 are the numbers of moles of the constituents 1 and 2  present in 

the solution and 𝜇1 𝑎𝑛𝑑 𝜇2 are their partial molar free energies or chemical 

potentials. If equation (1)  is divided by  n1+n2  the result is  

𝑛1

𝑛1+𝑛2
𝑑𝜇1 +

𝑛2

𝑛1+𝑛2
𝑑𝜇 2 = 0 

                                             𝑁1𝑑𝜇1 + 𝑁2𝑑𝜇 2 = 0  ------------(2) 

Where 𝑁1 𝑎𝑛𝑑 𝑁2 are the mole fractions of  the respective components. 
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The chemical potential of  any constituent of solution depends on the temperature , 

(total) pressure and composition of the solution, if the temperature and pressure are 

maintained constant, however , the chemical potential is determined by the 

composition only .It is then possible , therefore , to write for an infinitesimal 

change of composition, 

                                𝑑𝜇 𝑖 = (
𝜕𝜇𝑖

𝜕𝑁𝑖
)

𝑇,𝑃
𝑑𝑁𝑖  

and  upon substitution in (2) it follows that  

              𝑁1 (
𝜕𝜇1

𝜕𝑁1
)

𝑇,𝑃
𝑑𝑁1 + 𝑁2 (

𝜕𝜇2

𝜕𝑁2
)

𝑇,𝑃
𝑑𝑁2 = 0   -----------------(3) 

              (
𝜕𝜇1

𝜕 ln 𝑁1
)

𝑇,𝑃
𝑑𝑁1 + (

𝜕𝜇2

𝜕 ln 𝑁2
)

𝑇,𝑃
𝑑𝑁2 = 0 ------------------(4)  

               [ ∵   (
𝜕𝜇1

1

𝑁1
𝜕𝑁1

)
𝑇,𝑃

𝑑𝑁1 + (
𝜕𝜇2

1

𝑁2
𝜕𝑁2

)
𝑇,𝑃

𝑑𝑁2] 

Since the sum of the two mole fractions is equal to unity ,i.e., 𝑁1 + 𝑁2 = 1, it is 

seen that  

               𝑑𝑁1 + 𝑑𝑁2 = 0  𝑜𝑟  𝑑𝑁2 = −𝑑𝑁1 

So that equation (4) can be written as  

 

                       (
𝜕𝜇1

𝜕 ln 𝑁1
)

𝑇,𝑃
− (

𝜕𝜇2

𝜕 ln 𝑁2
)

𝑇,𝑃
= 0 

Giving a useful form of the Gibbs-Duhem equation . we know that the chemical 

potential of any constituent of a liquid mixture is represented by  

                  𝜇𝑖 = 𝑅𝑇𝑑 ln 𝑓𝑖 ------------------(6) 

Using (6) in (5) we get          

                (
𝑅𝑇𝑑 ln 𝑓1

𝜕 ln 𝑁1
)

𝑇,𝑃
− (

𝑅𝑇𝑑 ln 𝑓2

𝜕 ln 𝑁2
)

𝑇,𝑃
= 0 

Dividing throughout  the equation by RT we get  
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          (
𝑑 ln 𝑓1

𝜕 ln 𝑁1
)

𝑇,𝑃
− (

𝑑 ln 𝑓2

𝜕 ln 𝑁2
)

𝑇,𝑃
= 0  

            (
𝑑 ln 𝑓1

𝜕 ln 𝑁1
)

𝑇,𝑃
=     (

𝑑 ln 𝑓2

𝜕 ln 𝑁2
)

𝑇,𝑃
-------------(7) 

This is the precise form of what is known as the Duhem-morgules equation. 

It is frequently encountered and employed in a less exact form which is based on 

the approximation that the vapor behaves as an exact gas. In this event the fugacity 

of the each component in the vapor may be replaced by itds respective partial 

(vapor) pressure , so that equation (7) becomes  

(
𝑑 ln 𝑝1

𝜕 ln 𝑁1
)

𝑇,𝑃
=     (

𝑑 ln 𝑝2

𝜕 ln 𝑁2
)

𝑇,𝑃
-------------(8) 

Where p1 and p2  are the partial vapor pressures of the two constituents in 

equilibrium with the liquid containing the mole fractions  𝑁1 𝑎𝑛𝑑 𝑁2respectively 

of these constituents. 

Applications of  Duhem- Morgules equation. 

It is important to note that equation (8) is applicable to any liquid solution of two 

constituents, irrespective of  whether the solution (or vapor) is ideal or not. 

In the derivation of this equation no assumptions or postulate was made 

concerning the properties of the solution. The results are based only on 

thermodynamic considerations ,and hence they are of complitely general 

applicability. 

The form given in equation (8) is also independent of the ideality or otherwise of 

the solution, but it involves supposition that the vapor in equilibrium with it 

behaves ideally. 
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