

JSS COLLEGE OF ARTS, COMMERCE AND SCIENCE (Autonomous) OOTY ROAD, MYSURU- 570 025

DEPARTMENT OF PHYSICS

Syllabus under National Educational Policy

For B.Sc programmes

- ✓ Physics, Chemistry
- ✓ Physics, Mathematics
- ✓ Physics, Computer Science
- ✓ Physics, Electronics

Wef

2023-24

Scheme of Evaluation for DSC papers

Course type	L:T:P	Total credits		Maxim	ium N	Marks in the	e Exa	mination/A	ssessme	ent			ination ation
			S	EE				IA					
			Theory	Practical	Theory Practical					Theory	Practical		
						40 (C	1+C2)	2	25(C1+C	22)		
DSC	4:0:2	4+2=6	60	25	C1			C2	C1		C2		
					IA	Assignment	IA	Seminar/ Assignment	IA	IA	Record	2:30 Hours	3 Hours
					10	10	10	10	10	10	05		

Scheme of Evaluation for OE (Open Elective) papers

(Open elective paper will be given to students in first four semesters)

Course type	L:T:P	Total credits		Maxin	num	Marks in th	e exam	/Assessment		Exam I	Duration
			S	EE		IA					
			Theory	Practical	Theory Practica			Practical	Theory	Practical	
OE	3:0:0	3	60	-		40 C1	(C1+C	2) <u>C2</u>		2:30	-
					IA	Assignment / Field work	IA	Seminar/ Assignment/ Activity		Hours	
					10	10	10	10			

Course Details

Sem	Course No	Course Code	Combination	Title of the	Course	Credit pattern	Total credit	Teaching/week	Ev	Evaluatio		attern
	NO	Code		course	type	L:T:P	creat		C1	C2	С3	Total Marks
Ι	C1/C2	FSA41031	PC	Mechanics &		4:0:0	4	4hrs/week	20	20	60	100
		FSA41032	PM	Properties of								
		FSA41033	PE	Matter	DSC							
		FSA41035	PCs	Practical - I		0:0:2	2	4hrs/week	10	15	25	50
Ш	C1/C2	FSB41031	PC	Electricity		4:0:0	4	4hrs/week	20	20	60	100
		FSB41032	PM	and	DCC							
		FSB41033	PE	Magnetism	DSC							
		FSB41035	PCs	Practical - II		0:0:2	2	4hrs/week	10	15	25	50
III	C1/C2	FSC41031	PC	Wave		4:0:0	4	4hrs/week	20	20	60	100
		FSC41032	PM	motion and	DSC							
		FSC41033	PE	optics	DSC							
		FSC41035	PCs	Practical-III		0:0:2	2	4hrs/week	10	15	25	50
IV	C1/C2	FSD41031	PC	Thermal		4:0:0	4	4hrs/week	20	20	60	100
		FSD41032	PM	Physics &	DCC							
		FSD41033	PE	Electronics	DSC							
		FSD41035	PCs	Practical-IV		0:0:2	2	4hrs/week	10	15	25	50
V	C1/C2	FSE41031	PC	Classical		4:0:0	4	4hrs/week	20	20	60	100
		FSE41032	PM	mechanics								
		FSE41033	PE	and	DSC							
				Quantum	DSC							
				mechanics-I			-					
		FSE41035	PCs	Practical-V		0:0:2	2	4hrs/week	10	15	25	50
		FSE41231	PC	Elements of		4:0:0	4	4hrs/week	20	20	60	100
		FSE41232	PM	Atomic, Molecular								
		FSE41233	PE	and Laser	DSC							
				Physics								
		FSE41235	PCs	Practical-VI		0:0:2	2	4hrs/week	10	15	25	50
VI	C1/C2	FSF41031	PC	Elements of		4:0:0	4	4hrs/week	20	20	60	100
		FSF41032	PM	Condensed								
		FSF41033	PE	matter and	DCC							
				Nuclear	DSC							
				Physics								
		FSF41035	PCs	Practical-VII		0:0:2	2	4hrs/week	10	15	25	50
		FSF41231	PC	Electronic		4:0:0	4	4hrs/week	20	20	60	100
		FSF41232	PM	Instrumentat								
		FSF41233	PE	ion and	DSC							
		50544005		Sensors		0.00		4h	4.0	4 -	25	50
		FSF41235	PCs	Practical-VIII		0:0:2	2	4hrs/week	10	15	25	50

<u>Course Details for OE (Open Elective papers)</u> (Open elective paper will be given to students in first four semesters)

Sem	Course	Course	Combinations	Title of the	Course	Credit	Total	Teaching/week	Ev	Evaluation pat		attern
	No	Code		course	type	pattern L:T:P	credit		C1	C2	С3	Total Marks
I	C1/C2	FSA800	KG, HP, EG	Energy Sources	OE	2:1:0	3	3hrs/week	20	20	60	100
П	C1/C2	FSB800	KG, HP, EG	Astronomy	OE	2:1:0	3	3hrs/week	20	20	60	100
	C1/C2	FSC800	KG, HP, EG	Sports Science	OE	2:1:0	3	3hrs/week	20	20	60	100
lv	C1/C2	FSD800	KG, HP, EG	Electrical Instruments	OE	2:1:0	3	3hrs/week	20	20	60	100

Telephone No. 2419677/2419361 Fax: 0821-2419363/2419301

e-mail : registrar@uni-mysore.ac.in www.uni-mysore.ac.in

UNIVERSITY State OF MYSORE

VishwavidyanilayaKaryasoudha Crawford Hall, Mysuru- 570 005 Dated: 26-10-2021

No.AC2(S)/151/2020-21

Notification

Sub:- Syllabus and Examination Pattern of Physics (UG) with effective from the Academic year 2021-22 as per NEP-2020.

Ref:- 1. Decision of Board of Studies in Physics (UG) meeting held on 27-09-2021.

- Decision of the Faculty of Science & Technology Meeting held on 16-10-2021.
- 3. Decision of the Academic Council meeting held on 22-10-2021.

The Board of studies in Physics (UG) which met on 27-09-2021 has recommended & approved the syllabus and pattern of Examination of Physics Programme with effective from the Academic year 2021-22 as per NEP -2020.

The Faculty of Science & Technology and Academic Council at their meetings held on 16-10-2021 and 22-10-2021 respectively have also approved the above said proposal and it is hereby notified.

The syllabus and Examination pattern is annexed herewith and the contents may be downloaded from the University Website i.e., www.uni-mysore.ac.in

To:-

- All the Principal of affiliated Colleges of University of Mysore, Mysore, Those who are running B.Sc Courses.
- 2. The Registrar (Evaluation), University of Mysore, Mysuru.
- 3. The Chairman, BOS/DOS, in Physics, Manasagangothri, Mysore.
- 4. The Dean, Faculty of Science & Technology, DoS in Psychology, MGM.
- The Director, Distance Education Programme, Moulya Bhavan, Manasagangotri, Mysuru.
- 6. The Director, PMEB, Manasagangothri, Mysore.
- 7. Director, College Development Council, Manasagangothri, Mysore.
- The Deputy Registrar/Assistant Registrar/Superintendent, Administrative Branch and Examination Branch, University of Mysore, Mysuru.
- 9. The PA to Vice-Chancellor/ Registrar/ Registrar (Evaluation) University of

Curriculum Structure-Physics

(Core and Electives)

Semesters- I to VI

SEM	DSC	Core Papers
Sem-1 :	A1	Mechanics & Properties of Matter
Sem -2 :	A2	Electricity and Magnetism
Sem-3 :	A3	Wave motion and optics
Sem-4:	A4	Thermal Physics & Electronics
Sem-5 :	A5 A6	 Classical Mechanics and Quantum Mechanics- I Elements of Atomic, Molecular Physics
Sem -6 :	A7 A8	 Elements of Nuclear Physics and Nuclear Instruments Elements of Condensed Matter Physics

Open Electives for 1st to 4th Semesters

Sl.No.	1 to 4 Semester
1.	Energy Sources
2.	Climate Science
3.	Astronomy
4.	Medical Physics
5.	Optical Instruments
6.	Sports Science
7.	Nanotechnology
8.	Electrical Instruments
9.	Electronic Instruments
10.	Physics for all
11.	Space Missions

Detailed Syllabus for I, II & III YearB.Sc Physics

Course Content Semester – I

Mechanics and Properties of Matter

Course Title: Mechanics and Properties of Matter	Course Credits:4
Total Contact Hours: 52	Duration of ESA: 2: 30 Hours
Course code : FSA410	Summative Assessment Marks: 60
Model Syllabus Authors: Physics Expert Committee	Formative Assessment Marks: 40

Programme Outcomes (POs)

PO-1: Discipline Knowledge: Knowledge of science and ability to apply to relevant areas.

PO-2: Problem solving: Execute a solution process using first principles of science to solve problems related to respective discipline.

PO-3: Modern tool usage: Use a modern scientific, engineering and IT tool or technique for solving problems in the areas of their discipline.

PO-4: Ethics: Apply the professional ethics and norms in respective discipline.

PO-5: Individual and teamwork: Work effectively as an individual as a team member in a multidisciplinary team.

PO-6: Communication: Communicate effectively with the stake holders, and give and receive clear instructions.

Course Articulation Matrix:

Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Program Outcomes (POs)

Course Outcomes (COs) (UGC guidelines)	1	2	3	4	5	6
CO-1: Will learn fixing units, tabulation of observations, analysis of data (graphical/analytical)	X	X				Х
CO-2: Will learn about accuracy of measurement and sources of errors, importance of significant figures.	X	X				
CO-3: Will know how g can be determined experimentally and derive satisfaction.	x					
CO-4: Will see the difference between simple and torsional pendulum and their use in the determination of various physical parameters.	X			x	X	x
CO-5: Will come to know how various elastic moduli can be determined.	X				Х	X

CO-6: Will measure surface tension and viscosity and appreciate the methods adopted.	X	X			
CO-7: Will get hands on experience of different equipment.	X	X	х	X	x

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course are Marked 'X' in the intersection cell if a course outcome addresses a particular program outcome.

	Mechanics & Properties of Matter	Hrs
Credit : 4+2	Unit – 1 Theory : 4 hours /Week	
Chapter No. 1	Topics to be covered/taught/learnt: Units and measurements: System of units (CGS and SI), measurement of length, mass and time, dimensions of physical quantities, dimensional formulae. Minimum deviation, errors.	
Chapter No. 2	Momentum and Energy : Work and energy, Conservation of momentum (linear). Conservation of energy with examples. Motion of rockets.	(13)
Chapter No. 3	Special Theory of Relativity: Constancy of speed of light. Postulates of Special Theory of Relativity. Length contraction. Time dilation. Relativistic addition of velocities.	
Topics for self study(If any)	Self Study Chapter.4 Laws of Motion: Newton's Laws of motion. Dynamics of single and a system of particles. Centre of mass. Ref: 1-4,9,10	
	Suggested Activities	
Activity No. 1	 i). Students can measure diameters of small balls of different size and estimate their volumes. ii). Students can measure lengths of nails of different size. iii). Students can measure volume of a liquid iv). Students can measure distances and put the result both in CGS and SI units in 2, 3 and 4 significant figures. Ask them to mention the precession of the measurement. v). students can estimate standard deviations wherever possible. 	
Activity No. 2	 Students can try and understand conservation of energy in every day examples. For example: i) What happens in solar conservation panels ii) Pushing an object on the table it moves iii) Moving car hits a parked car causes parked car to move. In these cases, energy is conserved. How? Understand and verify if possible. 	
	Unit – 2	
Chapter No. 4.	Laws of Motion: Newton's Laws of motion. Dynamics of single and a system of particles. Centre of mass.	

Chapter No. 5.	Dynamics of Rigid bodies : Rotational motion about an axis, Relation between torque and angular momentum, Rotational energy. moment of inertia: M I of a rectangular Lamina and solid cylinders. Flywheel, Theory of compound pendulum and determination of g.	
Chapter No. 6.	Gravitation: Law of Gravitation. Motion of a particle in a central force field (motion is in a plane, angular momentum is conserved, areal velocity is constant). Kepler's laws (statements). Satellite in a circular orbit.	(13)
Topics for self study(If any)	Chapter 7: Geosynchronous orbits. Basic idea of global positioning system (GPS).Ref: 1-4,9,10	
	Suggested Activities	
Activity No. 3	Activity: Moment of inertia is an abstract concept. It simply gives a measure of rotational inertia of a rigid body and it is proportional to the product of the square of radius, r of the body and its mass, m. Students by referring to websites, can construct and perform simple experiments to verify that $MI \alpha mr^2$.	
Activity No. 3	Activity: Moment of inertia is an abstract concept. It simply gives a measure of rotational inertia of a rigid body and it is proportional to the product of the square of radius, r of the body and its mass, m. Students by referring to websites, can construct and perform simple experiments to verify that	

	Unit - 3	
Chapter No. 8	Elasticity: Hooke's law - Stress-strain diagram, elastic moduli-relation between elastic constants, Poisson's Ratio-expression for Poisson's ratio in terms of elastic constants. Work done in stretching and work done in twisting a wire-Twisting couple on a cylinder. Torsional pendulum-Determination of rigidity modulus and moment of inertia - q, η and σ by Searle's method	(13)
	Suggested Activities	
Activity No. 5	Activity: Arrange a steel spring with its top fixed with a rigid support on a wall and a meter scale along side. Add 100 g load at a time on the bottom of the hanger in steps. This means that while putting each 100g load, we are increasing the stretching force by 1N. Measure the extension for loads up to 500g. Plot a graph of extension versus load. Shape of the graph should be a straight line indicating that the ratio of load to extension is constant. Go for higher loads and find out elastic limit of the material.	
Activity No.6	Activity: Repeat the above experiment with rubber and other materials and find out what happens after exceeding elastic limit. Plot and interpret.	
	Unit - 4	

Chapter No. 9 Chapter No. 11	 Surface tension: Definition of surface tension. Surface energy, relation between surface tension and surface energy, pressure difference across curved surface example, excess pressure inside spherical liquid drop, angle of contact. Viscosity: Streamline flow, turbulent flow, equation of continuity, determination of coefficient of viscosity by Poisulle's method, Stoke's method. Problems. 		
Topics for self study(If any)	Capillarity determination of surface tension by drop weight method. Ref: 6,7,9,10		
	Suggested Activities		
Activity No.7	 Measure surface tension of water and other common liquids and compare and learn Why water has high ST? think of reasons. Check whether ST is a function of temperature? You can do it by heating the water to different temperatures and measure ST. Plot ST versus T and learn how it behaves. Mix some quantity of kerosene or any oil to water and measure ST. Check whether ST for the mixture is more or less than pure water. List the reasons. 		
Activity No. 8	 Activity: 2. Collect a set of different liquids and measure their viscosity. i) Find out whether sticky or non-sticky liquids are most viscous. List the reasons. ii) Mix non sticky liquid to the sticky liquid in defined quantities and measure viscosity. Find out viscosity is increasing or decreasing with increase of non- sticky liquid concentration. iii) Do the above experiment by mixing sticky liquid to the non sticky liquid. Find out change in viscosity with increase of concentration of sticky liquid. List the applications where concept of Viscosity plays a dominant role 		

Text Books:

Sl No	Title of the Book	Authors Name	Publisher	Year of Publication
1	Mechanics by, New Eition	D. S. Mathur	S.Chand & Co.	2000
2	Mechancis and Relativity by 3 rd Edition,	Vidwan Singh Soni,	PHI Learning Pvt. Ltd.	
3	Mechanics Berkeley Physics Course, Vol.1:	Charles Kittel, <i>et.al</i> .	Tata McGraw-Hill	2007
4	Properties of Matter	Brijlal & Subramanyam.		

References Books

Sl No	Title of the Book	Authors Name	Publisher	Year of Publication
1	Physics. 9 th Edn,	Resnick, Halliday & Walter,	Wiley	2010
2	Physics Vol-I	Halliday and Resnick,		

List of Experiments to be performed in the Laboratory: (Minimum EIGHT experiments have to be carried out)

1.	Determination of g using bar pendulum (L versus T and L versus LT ² graphs).
2.	Determination of moment of inertia of a Fly Wheel.
3.	Determination of rigidity modulus using torsional pendulum.
4.	Modulus of rigidity of a rod – Static torsion method.
5.	Determination of elastic constants of a wire by Searle's method.
6.	Young's modulus by Koenig's method.
7.	Viscosity by Stoke's method.
8.	Verification of Hook's law.
9.	Determination of surface tension of a liquid and the interfacial tension between two liquids using drop weight method.
10.	Study of motion of a spring and to calculate Spring constant, g and unknown mass.
11.	Determination of Young's modulus of a bar by the single cantilever method.
12.	Determination of Young's modulus of a bar by uniform bending method.
13.	Radius of capillary tube by mercury pellet method.
14	Verification of parallel and perpendicular axis theorems.

Reference Book for Laboratory Experiments

Sl No	Title of the Book	Authors Name	Publisher	Year of Publication
1	Physics through experiments	B.Saraf	Vikas Publications	2013
2	A lab manual of Physics for undergraduate classes, 1 st Edition,		Vikas Publications.	
3	BSc Practical Physics Revised Ed	CL Arora	S.Chand & Co.	2007
4	An advanced course in practical physics.	D. Chatopadhyay, PC Rakshit, B.Saha	New Central Book Agency Pvt Ltd.	2002

Semester – II

Electricity & Magnetism

Course Title: Electricity and Magnetism	Course Credits: 4
Total Contact Hours: 52	Duration of ESA: 2:30 Hours
Course code : FSB410	Summative Assessment Marks: 60
Model Syllabus Authors: Physics Expert Committee	Formative Assessment Marks: 40

Programme Outcomes

- 1. Discipline Knowledge: Knowledge of science and ability to apply to relevant areas.
- 2. Problem solving: Execute a solution process using first principles of science to solve problems related to respective discipline.
- 3. Modern tool usage: Use a modern scientific, engineering and IT tool or technique for solvingproblems in the areas of their discipline.
- 4. Ethics: Apply the professional ethics and norms in respective discipline.
- 5. Individual and teamwork: Work effectively as an individual as a team member in a multidisciplinary team.
- 6. Communication: Communicate effectively with the stake holders, and give and receive clearinstructions.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Program Outcomes (POs)

Course Outcomes (COs)	1	2	3	4	5	6
i. Demonstrate Gauss law, Coulomb's law for the electric field, and apply it to systems of point charges as well as line, surface, and volume distributions of charges.	x	x				
ii. Explain and differentiate the vector (electric fields, Coulomb's law) and scalar (electric potential, electric potential energy) formalisms of electrostatics.	X					
iii. Apply Gauss's law of electrostatics to solve a variety of problems.	X	x			x	
iv. Describe the magnetic field produced by magnetic dipoles and electric currents.	X					
v. Explain Faraday-Lenz and Maxwell laws to articulate the relationship between electric and magnetic fields.	X					
vi. Describe how magnetism is produced and list examples where its effects are observed.	x				x	x

vii. Apply Kirchhoff's rules to analyze AC circuits consisting of parallel and/or series combinations of voltage sources and resistors and to describe the graphical relationship of resistance, capacitor and inductor.	x		X	X
 viii. Apply various network theorems such as Superposition, Thevenin, Norton, Reciprocity, Maximum Power Transfer, etc. and their applications in electronics, electrical circuit analysis, and electrical machines. 	X		X	X

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. Mark 'X' in the intersection cell if a course outcome addresses a particular program outcome.

	Electricity & Magnetism	Hours
	Unit – 1	
Chapter No. 1	Topics to be covered/taught/learnt: Electric charge and field	3
	Coulomb's law, electric field strength, electric field lines, point charge in an electric field and electric dipole, work done by a charge (derivation of the expression for potential energy)	
Chapter No. 2	Topics to be Covered	3
	Gauss's law and its applications (electric fields of a (i) spherical charge distribution, (ii) line charge and (iii) an infinite flat sheet of charge).	
Chapter No. 3	Topics to be Covered	7
	Electric potential, line integral, gradient of a scalar function, relation between field and potential. Potential due to point charge and distribution of charges (Examples: potential associated with a spherical charge distribution, infinite line charge distribution, infinite plane sheet of charges). Constant potential surfaces, Potential due to a dipole and electric quadrupole.	
Topics for self study(If any)	Constant potential surfaces - for self learning Work out problems listed in the reference	
	Suggested Activities	
Activity No. 1	 Learn the difference between and DC and AC electricity and their characteristics. Voltage and line frequency standards in different countries. A small project report on production of electricity as a source of energy: Different methods 	

Activity No. 2	 Learn to use a multimeter (analog and digital) to measure voltage, current and resistance. Continuity testing of a wire. Learn about household electrical connection terminals: Live, neutral and ground and voltage between the terminals. Role of earthing and safety measures 	
	Unit – 2	
Chapter No. 4.	Topics to be covered Conductors in electrostatic field Conductors and insulators, conductors in electric field. Capacitance and capacitors, calculating capacitance in a parallel plate capacitor, parallel plate capacitor with dielectric, dielectrics: an atomic view. Energy stored in a capacitor, Dielectric and Guass's law.	6
Chapter No. 5.	Topics to be covered Electric currents and current density. Electrical conductivity and Ohm's law. Physics of electrical conduction, conduction in metals and semiconductors, circuits and circuit elements: Variable currents in capacitor circuits, Resistor, inductor and capacitor and their combination. force on a moving charge.	7
Topics for self study(If any)	Currents and voltage in combination of R, L and C circuits	
	Suggested Activities	
Activity No. 3	 Learn about electrical appliances which work with AC and DC electricity Learn about types of resistors and their colour codes and types of capacitors(electrolytic and non-electrolytic) 	
Activity No. 4	 Learn about power transmission: 3-phase electricity, voltage and phase Visit a nearby electrical power station. Interact with line men, Electrical engineers and managers. Discuss about power loss in transmission. How to reduce it? Prepare a small project report on street lighting and types of electrical bulbs. 	

	Unit – 3	
Chapter No.6	Topics to be covered Magnetism Definition of magnetic field, Ampere's law and Biot-Savart law (magnetic force and magnetic flux), Magnetic force on a current carrying conductor, Hall effect. Electromagnetic induction, conducting rod moving in a magnetic field, law of induction and mutual inductance, self-inductance and energy stored in a magnetic field.	7
Chapter No. 7	Topics to be covered Alternating current circuits: Resonant circuit, alternating current, quality factor, RL, RC, LC, LCR circuits, admittance and impedance, power and energy in AC circuits.	6
Topics for self study(If any)	Hall Effect	
	Suggested Activities	
Activity No. 5	 Activity: 1. Prepare a small project report on street lighting and types of electrical bulbs. 2. Learn the measurement of electric current using tangent galvanometer. 	
Activity No.6	Activity: Build a small coil with insulated copper wire. Connect an ammeter micro/milli ammeter. Verify magnetic induction using a powerful bar magnet.	
	Unit - 4	
Chapter No. 8	Electromagnetic waves: Equation of continuity, Maxwell's equations, displacement current, electromagnetic wave, energy transported by electromagnetic waves. Electromagnetic waves in different frames of reference, Field of a current loop, magnetic moment, Electric current in atoms, electron spin and magnetic moment, magnetization and magnetic susceptibility.	8
Chapter No. 9	Topics to be covered: Types of magnetic materials: diamagnetic, paramagnetic and ferromagnetic materials. B-H hysteresis curves.	5
Topics for self study(If any)	B-H curves and its characteristics Ferrites	

	Suggested Activities	
Activity No.7	 Activity: Prepare a small project report on production of magnetic field: Permanent magnets, electromagnets and superconducting magnets. Learn the principle of working of a Gauss meter to measure magnetic field 	
Activity No. 8	Activity: 1. Model the earth's magnetic field with a diagram. Explain the effect of tilt of the earth's axis and reasons for the change in the tilt of the earth's axis over thousands of years.	

References Books:

Sl	Title of the Book	Authors Name	Publisher	Year of
No				Publication
1	Physics-Part-II,	David Halliday and	Wiley Eastern Limited	2001
		Robert Resnick		
2	Berkeley Physics Course, Vol-2,	Edward M Purcell	Tata Mc Graw-Hill	2008
	Electricity and Magnetism,		Publishing Company Ltd,	
	Special Edition		New Delhi	
	*			

List of Experiments to be performed in the Laboratory

(Minimum EIGHT experiments have to be carried out)

1.	Experiments on tracing of electric and magnetic flux lines for standard configuration.
2.	Determination of components of earth's magnetic field using a Ballistic galvanometer.
3.	Determination of capacitance of a condenser using B.G.
4.	Determination of high resistance by leakage using B.G.
5.	Determination of mutual inductance using BG.
6.	Charging and discharging of a capacitor (energy dissipated during charging and time constant measurements.
7.	Series and parallel resonance circuits (LCR circuits).
8.	Impedance of series RC circuits- determination of frequency of AC.
9.	Study the characteristics of a series RC and RL Circuit.
10.	Determination of self-inductance of a coil.
11.	Verification of laws of combination of capacitances and determination of unknown capacitance using de - Sauty bridge.
12.	Determination of B_H using Helmholtz double coil galvanometer and potentiometer.

Telephone No. 2419677/2419361 Fax: 0821-2419363/2419301

e-mail : registrar@uni-mysore.ac.in www.uni-mysore.ac.in

UNIVERSITY SOF MYSORE

Estd. 1916

No.AC2(S)/151/2020-21

VishwavidyanilayaKaryasoudha Crawford Hall, Mysuru- 570 005 Dated:10.10.2022

Notification

Sub:- Syllabus and Examination Pattern of Physics (UG) (III & IV Semester) with effective from the Academic year 2022-23 as per NEP-2020.

Ref:- 1. Decision of Board of Studies in of Physics (UG) Meeting held on 02-09-2022.

 Decision of the Faculty of Science & Technology Meeting held on 15-09-2022.

3. Decision of the Academic Council meeting held on 23-09-2022.

The Board of Studies in Physics (UG) which met on 02-09-2022 has recommended & approved the syllabus and pattern of Examination of Physics Course (III & IV Semester) with effective from the Academic year 2022-23 as per NEP - 2020.

The Faculty of Science & Technology and Academic Council at their meetings held on 15-09-2022 and 23-09-2022 respectively has also approved the above said syllabus and hence it is hereby notified.

The syllabus and Examination pattern is annexed herewith and the contents may be downloaded from the University Website i.e., <u>www.uni-mysore.ac.in</u>.

Draft Approved by the Registrar

<u>To:-</u>

LALK Deputy Registrar (Academic) University of Mysore Mysore-570 005

1. All the Principal of affiliated Colleges of University of Mysore, Mysore.

- 2. The Registrar (Evaluation), University of Mysore, Mysuru.
- 3. The Chairman, BOS/DOS, in Physics, Manasagangothri, Mysore.
- 4. The Dean, Faculty of Science & Technology, DoS in Earth Science, MGM.
- 5. The Director, Distance Education Programme, Moulya Bhavan, Manasagangotri, Mysuru.
- 6. The Director, PMEB, Manasagangothri, Mysore.
- 7. Director, College Development Council, Manasagangothri, Mysore.
- The Deputy Registrar/Assistant Registrar/Superintendent, Administrative Branch and Examination Branch, University of Mysore, Mysuru.
- The PA to Vice-Chancellor/ Registrar/ Registrar (Evaluation), University of Mysore, Mysuru.

10. Office Copy.

Detailed Syllabus of III Semester Physics

	Program Outcomes					
1.	Disciplinary knowledge					
2.	Communication Skills					
3.	Critical thinking, Reflective thinking, Analytical reasoning, Scientific reasoning					
4.	Problem-solving					
5.	Research-related skills					
6.	Cooperation/ Teamwork/ Leadership readiness/Qualities					
7.	Information/Digital literacy/Modern Tool Usage					
8.	Environment and Sustainability					
9.	Multicultural competence					
10.	Multi-Disciplinary					
11.	Moral and ethical awareness/Reasoning					
12.	Lifelong learning / Self Directed Learning					

	Course Learning Outcomes						
At the	At the end of the course students will be able to:						
i.	Identify different types of waves by looking into their characteristics.						
ii.	Formulate a wave equation and obtain the expression for different parameters associated with waves.						
iii.	Explain and give a mathematical treatment of the superposition of waves under different conditions, such as, when they overlap linearly and perpendicularly with equalor different frequencies and equal or different phases.						
iv.	Describe the formation of standing waves and how the energy is transferred along the standing wave in different applications, and mathematically model in the case of stretched string and vibration of a rod.						
v.	Give an analytical treatment of resonance in the case of open and closed pipes in general and Helmholtz resonators in particular.						
vi.	Describe the different parameters that affect the acoustics in a building, measure it and control it.						
vii.	Give the different models of light propagation and phenomenon associated and measure the parameters like the wavelength of light using experiments like Michelson interferometer, interference and thin films.						
viii.	Explain diffraction due to different objects like singles slit, two slits, diffraction of grating, oblique incidence, circular aperture and give the theory and experimental setup for the same.						
ix.	Explain the polarization of light and obtain how the polarization occurs due to quarter wave plates, half wave plates, and through the optical activity of a medium.						
	Course Articulation Matrix						

	Mapping of Course Outcomes (CO) Program Outcomes												
Cou	rse Outcomes / Program Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
i.	Identify different types of waves by looking into their characteristics.	X	X	X	X	X	X					X	X
ii.	Formulate a wave equation and obtainthe expression for different parameters associated with waves.	X	X	Х	Х	Х	X					Х	х
iii.	Explain and give a mathematical treatment of the superposition of waves under different conditions such as when they overlap linearly and perpendicularly	Х	X	Х	Х	Х	X					Х	Х
	with equal or different frequencies and equal or different phases.												
iv.	Describe the formation of standing waves and how the energy is transferred along the standing wave in different applications, and mathematically model in the case of stretched string and vibration of a rod.		X	X	X	Х	x					Х	Х
v.	Give an analytical treatment of resonance in the case of open and closed pipes in general and Helmholtz resonators in particular.		X	X	X	х	X					X	Х
vi.	Describe the different parameters that affect the acoustics in a building, measure it and control it.	х	x	Х	Х	Х	X					Х	X
vii.	Give the different models of light propagation and phenomenon associated and measure the parameters like the wavelength of light using experiments like Michelson interferometer, interference and thin films.	X	x	X	Х	X	х					X	X
viii.	Explain diffraction due to differentobjects like singles slit, two slits, diffraction grating, oblique incidence, circular aperture and give the theory and experimental setup for the same.	X	x	X	Х	X	x					Х	х
ix.	Explain the polarization of light and obtain how the polarization occurs due to quarter wave plates, half wave plates, and through the optical activity of a medium.	Х	X	Х	Х	Х	х					Х	Х

Course Content Semester -III

Wave Motion and Optics

Course Title: Wave Motion and Optics	Course Credits:4
Total Contact Hours: 52	Duration of ESA: 3 hours
Course code : FSC410	Summative Assessment Marks: 60
Model Syllabus Authors: Physics Expert Committee	Formative Assessment Marks: 40

		Prerequisites
i.	Fundamentals of waves	

Wave motion and Optics

Unit – **1** - Waves and Superposition of Harmonic Waves

The Portion to be Covered

Waves: Plane and Spherical Waves. Longitudinal and Transverse Waves. Characteristics of wave motion, Plane Progressive (Travelling) Wave and its equation, Wave Equation – Differential form (derivation). Particle and Wave Velocities: Relation between them, Energy Transport – Expression for intensity of progressive wave, Newton's Formula for Velocity of Sound. Laplace's Correction (Derivation). Brief account of Ripple and Gravity Waves. (**Text Book : 1-4**) (**5 Hours**)

Superposition of Harmonic Waves : Linearity and Superposition Principle. Superposition of two collinear oscillations having (1) equal frequencies and (2) different frequencies (Beats) – Analytical treatment. Superposition of two perpendicular Harmonic Oscillations: Lissajous Figures with equal and unequal frequency- Analytical treatment. Uses of Lissajous' figures.

(Text Book : 1-4) (6 Hours)

Topic Learning Outcomes

At the end of the topic, students should be able to:

~			~ ~	
SL No	TLO's	BL	CO	PO
i.	Explain the difference between plane and spherical waves, longitudinal and transverse waves and give their characteristics.	L2	1	1-6, 11-12
ii.	Write down an equation for the progressive wave in its differential form.	L2	1	1-6, 11-12
iii.	Obtain the relation between particle and wave velocity.	L2	1	1-6, 11-12
iv.	Obtain an expression for intensity of progressive waves.	L2	1	1-6, 11-12
v.	Obtain Newton's formula for the velocity of sound and discuss the factors for which sound velocity is dependent.	L2	2	1-6, 11-12
vi.	Apply the Laplace's correction to the equation of motion of a progressive wave.	L2	2	1-6, 11-12
vii.	With examples explain ripple and gravity waves.	L1	2	1-6, 11-12

viii.	Give the theory of superposition of two linear waves having equal frequencies and different frequencies.	L2	3	1-6, 11-12
ix.	Discuss the formation of different Lissajous figures under different conditions of amplitude and frequency when they superimpose perpendicularly.		3	1-6, 11-12
х.	Give some applications of an Lissajous figures.	L1	3	1-6, 11-12
xi.	Higher order problems.	L3	1,2, 3	1-6, 11-12

Teaching and Learning Methodology

Lecture/ PPT/ Videos/ Animations/ Role Plays/ Think-Pair-Share/ Predict-Observe-Explain/ Demonstration/ Concept mapping/ Case Studies examples/ Tutorial/ Activity/ Flipped Classroom/ Jigsaw/ Field based Learning/ Project Based Learning/ Mini Projects/ Hobby Projects/ Forum Theatre/ Dance/ Problem Based Learning/ Game Based Learning/ Group Discussion/ Collaborative Learning/ Experiential Learning / Self Directed Learning etc.

Assessment Techniques

One minute paper/ Predict-Observe-Explain/ Think-Pair-Share/ Class Test/ Quiz/ Crosswords/ Group Assessment/ Assignment/ Peer-to-Peer Evaluation/Seminar etc

	Suggested Activities (2 Hours)						
Activity No. 1	 We know that sound is produced because of vibration. Look into at least 10 musical instruments and identify the regions of vibrations that produces the sound and those parts which enhances the sound because of reverberation. 1. Identify one common element in all of these. 2. Identify equipment which creates beats and try to explain the underlying basic principles. Demonstrate the examples of beats using two tuning forks. 3. Identify what will happen when you drop a stone in a standing water, and when your drop two stones side by side. 4. Make your observations sketch them and comment on it in a report. 						
Activity No. 2	Draw two sine waves (Amplitude vs time) one shifted with other in phase. Identity where the resonation occurs for each phase shift. Plot phase vs time taken for resonance.						
Activity No. 3	Take smooth sand, place a pointed edged pen vertically on the sand. To the mid of the pen, connect two perpendicular threads. Pull these perpendicularthreads by varying the forces and timings. Note down the different shapes produced on the sand. Try to interpret the shapes. Make a report of it						
Activity No. 4	Hang a pot with sand, which has a hole in the bottom. Gently pull the pot on one side and observe the pattern formed by the sand on the floor. Report the observations.						

SL No	TLO's	B L	СО	РО							
-	ning Outcomes of the topic, students should be able to:		1								
formula (de measureme	Absorption coefficient, Reverberation and Reverberation time, Strivation), Factors affecting acoustics in buildings, Requisites for the intensity and pressure levels. (Text Book : 1-4)		e's Rever acoustic								
(Stationary) vibration in stretched st Longitudina Pipes – An	Vaves : Velocity of transverse waves along a stretched string (de Waves in a String - Fixed and Free Ends (qualitative). Theory of a stretched string, Energy density and energy transport of a tr ing. Vibrations in rods – longitudinal and transverse modes (qu l Waves in gases (derivation). Normal Modes of vibrations in alyticaltreatment. Concept of Resonance, Theory of Helmholtz	f Nori ansvei alitati Open	mal mode rse wave ve). Velo and Clo ator.	es of along a ocity of sed							
	Unit – 2 - Standing Waves and Acoust The Portion to be Covered	ICS									
	Wave Motion and Optics	• _									
	 2. Take another weight and put that in another place ar vibration at the centre. 3. Vary the load in the centre of the spring and measure the 			-							
	 Activity: Take a stretched spring. Stretch it across two edges. Put a weight of string, pluck it and measure the amplitude of the vibration. All group will measure total damping time of oscillating spring. (Using mobile or scale) And plot a grap the- 1. Varying load on the spring and amplitude at the cer 										
	3 . In the third slide, they will list three observations from t	hat stu	dy.								
	 In the second slide. Students will show the graph of me 										
	teacher shall assign marks to each group, wherein all members of the group will ge equal marks.1. The first slide will explain the process of doing the experiment.										
Activity No	Activity No. 6 Note for the teachers for the activity: Make 3 groups among students and assign each group the activity of drawing one of the 3 graphs given below. Provide a few days the complete the activity. One the specific day, each group has to make a ppt presentation of the following three slides. One the day of the presentation select a member from each group randomly to make the presentation. Based on the work and presentation,										
Activity No	Design a coupled pendulum. Study the impact of the motion of one pendulum over the other pendulum by varying the length, direction of the motion of one pendulum and mass of pendulum and observe the resultant changes. Trace the path of the bobs and make a report.										

	Teaching and Learning Methodology		· ,~	-,
xii.	building. Higher order problems.	L3	4,5,6	1-6, 11-12
xi.	Explain what good acoustics of a building are and how acoustics is measured in terms of intensity and pressure insidea building	L2	6	1-6, 11-12
х.	List out which are different parameters within a building which effects the acoustics.	L1	6	1-6, 11-12
ix.	Obtain Sabine's Reverberation formula and discuss what are the factors on which the Reverberation time depends on?	L2	5	1-6, 11-12
viii.	Define Reverberation, Reverberation time and absorption coefficient of a material.	L1	5	1-6, 11-12
vii.	Give the theory of Helmholtz resonator and explain how it is used to calculate some parameters of the way the standing waves are set in there.	L2	5	1-6, 11-12
vi.	With an analytical treatment explain the concept of resonance using the normal modes of vibrations of open and closed pipes.	L2	5	1-6, 11-12
v.	Explain types of waves that are produced in gas. Obtain an expression for the same.	L2	4	1-6, 11-12
iv.	Quantitatively bring about the mode of vibrations created in a rod.	L2	4	1-6, 11-12
iii.	Explain normal modes of a stretched string. Obtain an expression for the energy density and discuss how this energy is transported along a stretched string.	L2	3	1-6, 11-12
ii.	Give a qualitative treatment of vibration of a string when it's both ends are fixed and free.	L2	3	1-6, 11-12
i.	Discuss the Transverse waves produced in stretched string and obtain the expression for the same.	L2	3	1-6, 11-12

Lecture/ PPT/ Videos/ Animations/ Role Plays/ Think-Pair-Share/ Predict-Observe-Explain/ Demonstration/ Concept mapping/ Case Studies examples/ Tutorial/ Activity/ Flipped Classroom/ Jigsaw/ Field based Learning/ Project Based Learning/ Mini Projects/ Hobby Projects/ Forum Theatre/ Dance/ Problem Based Learning/ Game Based Learning/ Group Discussion/ Collaborative Learning/ Experiential Learning / Self Directed Learning etc.

	Formative Assessment Techniques			
	One minute paper/ Predict-Observe-Explain/ Think-Pair-Share/ Class Test/ Quiz/ Crosswords/ Group Assessment/ Assignment/ Peer-to-Peer Evaluation/Seminar etc.			
	Suggested Activities (2 Hours)			
Activity No. 7	List different phenomenon where standing waves are found in nature. Identify the phenomena and reason for standing waves. Also identify the standing waves in musical instruments. Make a report.			
Activity No. 8	 Go to 5 different newly constructed houses when they are not occupied and when they are occupied. Make your observations on sound profile on each room. Give the reasons. Make a report. Visit three very good auditoriums, list out different ways in which the acoustic arrangements have been done (as decoration and Civil works). Look for the reasons in Google and identify which is acoustically the best auditorium among the three you visited. Make a report. 			
Activity No. 9	Note for the teachers for the activity: Make 3-4 groups among students and assign each group the activity of drawing one of the graphs given below. Provide a few days to complete the activity. One the specific day, each group has to make a ppt presentation of the following three slides. One the day of the presentation select a member from each group randomly to make the presentation. Based on the work and presentation, teacher shall assign marks to each group, wherein all members of the group will get equal marks.			
	1. The first slide will explain the process of doing the experiment.			
	2. In the second slide. Students will show the graph of measurement.			
	3. In the third slide, they will list three observations from that study.			
	Activity: Take a bowl of different liquids (water, milk, kerosene, salt water, Potassium Permanganate (KMNO4) solution. Place a small non oily floating material (ex: thin plastic) on the surface of the liquid. Drop a marble on the liquid at the centre of the bowl. Repeat the experiment by dropping the marble from the different heights. Plot a graph of-			
	 Height v/s time of oscillation Weight of the marble v/s time of oscillation 			
Activity No. 10	Note for the teachers for the activity: Make 3-4 groups among students and assign each group the activity of drawing one of the graphs given below. Provide a few days to complete the activity. One the specific day, each group has to make a ppt presentation of the following three slides. One the day of the presentation select a member from each group randomly to make the presentation. Based on the work and presentation, teacher shall assign marks to each group, wherein all members of the group will get equal marks.			
	1. The first slide will explain the process of doing the experiment.			
	2. In the second slide. Students will show the graph of measurement.			
	3 . In the third slide, they will list three observations from that study.			

Nature of light : To Deter	Wave Motion and Optics Unit – 3 - Nature of light and Interference	
Nature of light : To Deter		
	The Portion to be Covered	
 Interference of light by d Interference pattern produced division of wave- front- Your Fresnel Biprism- Interference 14.7 to 14.9) Interference of light by division by a plane parallel film illum reflecting surfaces- color of the 	ermine wavelength of light, distances and shapes har model of light-The wave model - Maxwell's electr Book No 5; Sections 2.1 to 2.4 and 2.8) division of wave front: Huygens's theory-Concept d on the surface of water-Coherence-Interference of ng's double slit experiment- derivation of expression with white light (Text Book No 5; Sections 12.1 to ision of amplitude: Interference by division of amp ninated by a plane wave-Interference by a film with thin films—Newton's rings-(Reflected light)-Michels of light* (Text Book No 5; Sections 15.1 to 15.2, 15.8 to	comagnetic waves- (2 Hours) pt of wave-front- of light waves by n for fringe width- 12.2, 14.1 to 14.5, (4 Hours) olitude-Interference h two non-parallel con Interferometer-

SL No	TLO's	BL	СО	РО
i.	Explain using Michelson interferometer how to determine the wavelength of light.	L2	7	1-6, 11-12
ii.	Give an account of the different possible shapes that are obtained in Michelson interferometer experiment and their relevance.	L2	7	1-6, 11-12

iii.	Discuss the wave model and the Corpuscular model of light.	L2	7	1-6, 11-12
iv.	Explain Maxwells electromagnetic waves.	L2	7	1-6, 11-12
v.	Give an account of the phenomenon of wave-particle duality.	L1	7	1-6, 11-12
vi.	Give the Huygen theory of wave-front.	L1	7	1-6, 11-12
vii.	Define Interference. Give some examples of Interference.	L1	7	1-6, 11-12
viii.	Give the theory of interference due to two coherent sources of light and obtain an expression for the wavelength of monochromatic source of light (Young's double slit experiment)	L2	7	1-6, 11-12
ix.	Explain how using personal biprism, a monochromatic coherent source of light are obtained. Using this experimental setup explain how the wavelength of monochromatic sources of light is determined.		7	1-6, 11-12
х.	x. Give the theory of interference due to division of amplitude by parallel and non-parallel plates.		7	1-6, 11-12
xi.	Explain how Newton's rings are obtained and discuss how the wavelength of light is determined using this experiment.	L2	7	1-6, 11-12
xii.	xii. Higher order problems.			1-6, 11-12
	Teaching and Learning Methodology			
Lecture/ PPT/ Videos/ Animations/ Role Plays/ Think-Pair-Share/ Predict-Observe-Explain/ Demonstration/ Concept mapping/ Case Studies examples/ Tutorial/ Activity/ Flipped Classroom/ Jigsaw/ Field based Learning/ Project Based Learning/ Mini Projects/ Hobby Projects/ Forum Theatre/ Dance/ Problem Based Learning/ Game Based Learning/ Group Discussion/ Collaborative Learning/ Experiential Learning / Self Directed Learning etc.				

Formative Assessment Techniques

One minute paper/ Predict-Observe-Explain/ Think-Pair-Share/ Class Test/ Quiz/ Crosswords/ Group Assessment/ Assignment/ Peer-to-Peer Evaluation/Seminar etc

		Suggested Acti	vities (2 Hou	rs)	
Activity No. 11	In the table given below explore which phenomenon can be explained by what and Make a report.				
	Sl No	Phenomenon	Particle of Light	Wave Nature	Dual Nature
		Pinhole camera			
	1	Formation of images			
		on lenses			
	2	Formation of images			
		on mirror			
	-	Interference			
	4	Polarization			
	5	Diffraction due to			
		single slit			
	6	Black body radiation			
	7	Photoelectric effect			
	8	De-Broglie hypothesis			
	9				
		Experiment			
Activity No. 12 Activity No. 13	 tivity No. 12 Why colour strips are seen in paddles on roads in rainy seasons try to simulat the same. Give the reasons. Make a report. Tivity No. 13 Note for the teachers for the activity: Make 3-4 groups among students and assign group the activity of drawing one of the graphs given below. Provide a few da complete the activity. One the specific day, each group has to make a ppt presentation the following three slides. One the day of the presentation select a member from group randomly to make the presentation. Based on the work and presentation, te shall assign marks to each group, wherein all members of the group will get marks. 1. The first slide will explain the process of doing the experiment. 2. In the second slide. Students will show the graph of measurement. 3. In the third slide, they will list three observations from that study. Activity: Take a bowl of different liquids (water, milk, kerosene, salt water, Potas Permanganate (KMNO4) solution. Place a small non oily floating material (explastic) on the surface of the liquid. Drop two marbles of same weight (mass) from same height on to the surface of the water but at the different time intervals. Plot gra the different observations. For teachers: Demonstrate the formation of Lissajous Figure using a CRO. different shapes of Lissajous Figure with varying frequency and amplitude. As students to comment on the observations. 			ents and assign each vide a few days to a ppt presentation member from each resentation, teacher oup will get equal lt water, Potassium material (ex: thir tht (mass) from the rvals. Plot graphfor	

Wave Motion and Optics

Unit – 4 - Diffraction and Polarization

The Portion to be Covered

Fraunhofer diffraction : Introduction- Fraunhofer diffraction- Single slit diffraction pattern-position of Maxima and Minima (Qualitative arguments)- Two slit diffraction pattern-position of Maxima and minima- Theory of plane diffraction Grating-Grating spectrum- normal and oblique incidence-Resolving power and dispersive power of a grating Single slit; Double Slit. Multiple slits & Diffractiongrating. (Text Book No 5; Sections 18.1 to 18.2, 18.6, 18.8 to 18.9) (4 Hours)

Fresnel Diffraction- Fresnel half period zones-Diffraction by a circular aperture-diffraction by an opaque disc-The zone plate -comparison between zone plate and convex lens. (Text Book No 5; Sections 20.1 to 20.3)

(3 Hours)

Polarisation: Introduction-Production of polarized light- The wire Grid polarizer and Polaroid-Superposition of two disturbances-Phenomenon of double refraction-Quarter wave plates and half wave plates- Analysis of polarized light-optical activity.

(Text Bool	Book No 5; Sections 22.1, 22.3, 22.4, 22.6 to 22.8) (4 Hours)			rs)
	rning Outcomes of the topic, students should be able to:			
SL No	TLO's	BL	СО	РО
i.	Define Fraunhofer diffraction.	L2	8	1-6, 11-12
ii.	Give a qualitative treatment of single slit/diffraction double slit diffraction.	L2	8	1-6, 11-12
iii.	Explain the theory of diffraction due to grating and the normal and oblique incidence.	L2	8	1-6, 11-12
iv.	Explain how the resolving power of a grating depends of the number of slits used.	L2	8	1-6, 11-12
v.	Give the theory of Fersnel half period zones.	L2	8	1-6, 11-12
vi.	Discuss zone plates with respect to convex lenses.	L2	8	1-6, 11-12
vii.	Explain optical polarization and polaroids.	L2	9	1-6, 11-12
viii.	Give different types of polaroids.	L2	9	1-6, 11-12
ix.	Give the theory of phenomenon of double refraction and explain what are ordinary and extraordinary rays.	L2	9	1-6, 11-12
х.	Give the theory of quarter wave plates and half wave plates.	L2	9	1-6, 11-12
xi.	Explain optical activity with theory. Give an experimental method to measure the optical activity of a material.	L2	9	1-6, 11-12
xii.	Higher order problems.	L3	8,9	1-6, 11-12

Teaching and Learning Methodology

Lecture/ PPT/ Videos/ Animations/ Role Plays/ Think-Pair-Share/ Predict-Observe-Explain/ Demonstration/ Concept mapping/ Case Studies examples/ Tutorial/ Activity/ Flipped Classroom/ Jigsaw/ Field based Learning/ Project Based Learning/ Mini Projects/ Hobby Projects/ Forum Theatre/ Dance/ Problem Based Learning/ Game Based Learning/ Group Discussion/ Collaborative Learning/ Experiential Learning / Self Directed Learning etc.

Assessment Techniques

One minute paper/ Predict-Observe-Explain/ Think-Pair-Share/ Class Test/ Quiz/ Crosswords/ Group Assessment/ Assignment/ Peer-to-Peer Evaluation/Seminar etc

	Suggested Activities (2 Hours)
Activity No. 14	 Explain polarization of light through a chart. List out the surfaces that reflect polarized light. Learn how polarization of light can be done by both transmission and reflection. Perform an experiment and make a report. USING CDs AND DVDs AS DIFFRACTION Gratings Ref:<u>https://www.nnin.org/sites/default/files/files/Karen_Rama_USING_CDs_AN_D_DVDs_AS_DIFFRACTION_GRATINGS_0.pdf</u> Obtain the diffraction spectra using a CD and design an experiment to find the distance between the tracks on it) (Ref: <u>https://www.brighthubeducation.com/science-lessons-grades-9-12/39347-diffraction-experiment-measuring-groove-spacing-on-cds/, https://silo.tips/download/diffraction-from-accompact-disk)</u>
Activity No. 15	What is the physics behind making 3D movies? Group Discussion (https://www.slideserve.com/rae/physics-behind-3d-movies-powerpoint-ppt-
Activity No. 16	<u>presentation</u>) Make a report.List out different types of zone plates and look for their applications in day to day life. Make a report.
Activity No. 17	Collect information and study how optically polarizing lenses are made. Visit a nearby lens making facility. Learn the principle behind sunglasses. Make a report.
Activity No. 18	Note for the teachers for the activity: Make 3 groups among students and assign each group the activity of drawing one of the graphs given below. Provide a few days to complete the activity. One the specific day, each group has to make a ppt presentation of the following three slides. One the day of the presentation select a member from each group randomly to make the presentation. Based on the work and presentation, teacher shall assign marks to each group, wherein all members of the group will get equal marks. 1. The first slide will explain the process of doing the experiment.

2. In the second slide. Students will show the graph of measurement.
3. In the third slide, they will list three observations from that study.
Activity: Identify any 3 sharp edges of varying thickness and assign them to 3 groups. Shine a laser light pointing towards the edge of the needle. Observe the patterns formed on the wall or screen and measure the distance between the bands. Correlate the distance between the bands formed with the thickness of the edge and the distance from the edge to the screen. By this, calculate the wavelength of the laser light used.

Textbooks				
Sl No	Title of the Book	Authors Name	Publisher	Year of Publication
1.	The Physics of Waves andOscillations,	N K Bajaj	Tata McGraw-Hill Publishing Company Ltd., SecondEdition,	1984
2.	Waves and Oscillations	N Subramanyam and Brij Lal	Vikas Publishing House Pvt. Ltd., Second Revised Edition	2010
3.	A Text Book of Sound	D R Khanna and RS Bedi	Atma Ram & Sons, ThirdEdition	1952
4.	Oscillations and Waves	Satya Prakash	Pragathi Prakashan, Meerut, Second Edition	2003
5.	Optics	Ajoy Ghatak	McGraw Hill Education(India) Pvt Ltd	2017
6.	A text Book of Optics	Brij Lal, M N Avadhanulu & N Subrahmanyam	S. Chand Publishing	2012

	References Books				
Sl No	Title of theBook	Authors Name	Publisher	Year of Publication	
1.	Berkeley PhysicsCourse – Waves,	Frank S Crawford Jr.	Tata Mc Graw- HillPublishing Company Ltd., Special Indian Edition,.	2011	
2.	Optics	Eugene Hecht	Pearson Paperback	2019	
3.	Introduction To Optics	Pedrotti and Frank L,	Pearson India	3rd Edition	
4.	Fundamentals of Optics	Francis Jenkins HarveyWhite	McGraw Hill Education	2017	

	Formative Ass	sessment
	Assessment	Marks
Internal Assessment		10
	Activity	10
	REU based Group Activity onduct, Report, Presentation)	10
Science C	communication Seminar/Poster etc.)	10
	Total	40
1 1 1	(Minimum 8 experiments	are to be conducted)
	city of sound through a wire using Sonometer.	
2. Frequ	uency of AC using Sonometer.	
3. Study	y of Lissajous' Figures	
4. To verify the laws of transverse vibration using Melde's apparatus.		de's apparatus.
5. Helm	holtz resonator using tuning fork.	
6. Helm	holtz resonator using electrical signal generate	pr.
7. To de	etermine refractive index of the Material of a p	rism using sodium source.

- 8. To determine the dispersive power and Cauchy constants of the material of a prism using mercury source.
- 9. To determine the wavelength of sodium source using Michelson's interferometer.

10.	To determine wavelength of sodium light using Fresnel Biprism.
11.	To determine wavelength of sodium light using Newton's Rings
12	To determine the thickness of a thin paper by measuring the width of the inter-

To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a wedge-shaped Film.
 To determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating.

14 To determine dispersive power and resolving power of a plane diffraction grating.

	Reference Book for Laboratory Experiments						
Sl Title of the Book Authors Name Publisher Ye No Publisher Publisher Publisher Publisher							
1.	Advanced Practical Physics forstudents	B.L. Flint and H.T. Worsnop	Asia Publishing House.	1971			
2.	A Text Book of Practical Physics	I. Prakash & Ramakrishna	Kitab Mahal, 11 th Edition	2011			
3.	Advanced level Physics Practicals	Michael Nelson and Jon M. Ogborn	Heinemann Educational Publishers, 4 th Edition	1985			

Detailed Syllabus of IV Semester B.Sc Physics

Course Content Semester – IV

Thermal Physics and Electronics

Course Title: Thermal Physics and Electronics	Course Credits:4
Total Contact Hours: 52	Duration of ESA: 2:30 Hours
Course code : FSD410	Summative Assessment Marks: 60
Model Syllabus Authors: Physics Expert Committee	Formative Assessment Marks: 40

Program Outcomes:			
Disciplinary knowledge			
Communication Skills			
Critical thinking, Reflective thinking, Analytical reasoning, Scientific reasoning			
Problem-solving			
Research-related skills			
Cooperation/ Teamwork/ Leadership readiness/Qualities			
Information/Digital literacy/Modern Tool Usage			
Environment and Sustainability			
Multicultural competence			
Multi-Disciplinary			
Moral and ethical awareness/Reasoning			
Lifelong learning / Self Directed Learning			

Prerequisites

i. Study of Pre-University

Course Learning Outcomes

At the end of the course students will be able to:					
i.	Apply the laws of thermodynamics and analyze the thermal system.				
ii.	Apply the laws of kinetic theory and radiation laws to the ideal and practical thermodynamicssystems through derived thermodynamic relations.				
iii.	Use the concepts of semiconductors to describe different Semiconductor devices such as diode transistors, BJT, FET etc and explain their functioning.				
iv.	Explain the functioning of OP-AMPS and use them as the building blocks of logic gates.				

v.	Give the use of logic gates using different theorems of Boolean Algebra followed by logic
	circuits.

	Course Art	icu	lati	on]	Ma	tris	7						
	Mapping of Course Out							Out	con	ies			
Cou	rse Outcomes / Program Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
i.	Apply the laws of thermodynamics and analyze the thermal system.	X	X	X	X	X	X					X	X
ii.	Apply the laws of kinetic theory and radiation laws to the ideal and practical thermodynamics systems through derived thermodynamic relations.	X	X	х	Х	X	x					X	X
iii.	Use the concepts of semiconductors to describe different Semiconductor devices like diode transistors, BJT, FETetc and explain their functioning.	x	X	X	X	X	x					X	X
iv.	Explain the functioning of OP-AMPS and them as the building blocks of logic gates.	X	X	X	X	X	X					X	X
v.	Give the use of logic gates using different theorems of Boolean Algebra followed by logic circuits.	x	x	Х	Х	X	X					X	X
	Thermal Physics	an	d E	lec	troi	nics	5						
	U	nit -	-1										
	The Portion	on t	o be	Co	vere	ed							
Revi First adiat	s of Thermodynamics: ew of the concepts of Heat and Temperat t Law of Thermodynamics: Different paticprocess, Work Done during Isotherm	ial f nal a	nd A	diab	atic I	Proc	esses	5.			(3	e fo Ho	r ar urs)
Second Law of Thermodynamics: Kelvin-Planck and Clausius Statements and their Equivalence. Reversible and Irreversible processes with examples. Heat Engines: Carnot engine &													

Equivalence. Reversible and Irreversible processes with examples. Heat Engines: Carnot engine & efficiency (no derivation). Refrigeration & coefficient of performance, Applications of Carnot engine in locomotion, Thermodynamic Scale of Temperature and its Equivalence to Perfect Gas Scale. Concept of Entropy, Second Law of Thermodynamics in terms of Entropy (5 Hours) Third Law of Thermodynamics: Statement, Significance and Unattainability of Absolute Zero. (2Hours)

SL No	TLO's	B L	C O	P O	
i.	Explain the first law of thermodynamics.	L1	1-6,11-12		
ii.	Give the differential form of the first law of thermodynamics and define what the internal energy is.	L2	L2 1 1-6,11-12		
iii.	Obtain an expression for work done in isothermal and adiabatic processes.	L2 1 1-6,11			
iv.	Give two systems of units of temperature measurement and give their equivalence.	L2	1	1-6,11-12	
v.	Describe and Discuss heat engine based on Carnot cycle.	L2	1	1-6,11-12	
vi.	Explain how the efficiency of refrigeration is measured?L2				
vii.	Detail out the application of the Carnot engine to a locomotion system.	L1	1	1-6,11-12	
viii.	Define entropy and write an expression for entropy using the second law of thermodynamics.	L2	L2 1 1-6,11-1		
ix.	tate the third law of thermodynamics and give its significanceL21-6,1sing the third law of thermodynamics describing why11bsolute zero temperature is not unattainable.11				
х.	High Order Problems.	L3	1	1-6,11-12	
	Teaching and Learning Methodology				
Demon Jigsaw/ Theatre	/ PPT/ Videos/ Animations/ Role Plays/ Think-Pair-Share/ stration/ Concept mapping/ Case Studies examples/ Tutorial/ Ac Field based Learning/ Project Based Learning/ Mini Projects / Dance/ Problem Based Learning/ Game Based Learning/ Group g/ Experiential Learning / Self Directed Learning etc.	tivity/ s/ Hob	Flipped	l Classroom ects/ Forur	
	Assessment Techniques				
	nute paper/ Predict-Observe-Explain/ Think-Pair-Share/ Class Te Assessment/ Assignment/ Peer-to-Peer Evaluation/Seminar etc	est/ Qı	uiz/ Cros	sswords/	
-	Suggested Activities (2 Hours)				

Activity No. 1	 I feel cold because coldness enter my body. Discuss the statement in day-to-day life. Approximately give examples of (i) open system (ii) closed system and (iii) isolated system Discuss when the temperature of the body is locked until what time you hold the thermometer in contact with a body. Discuss it in contact with laws of thermodynamics. Discuss why when a person works or does exercise, he sweats. Reason it with the laws of thermodynamics.
Activity No. 2	 Note for the teachers for the activity: Make 3-4 groups among students and assign each group the activity of drawing one of the graphs given below. Provide a few days to complete the activity. One the specific day, each group has to make a ppt presentation of the following three slides. One the day of the presentation select a member from each group randomly to make the presentation. Based on the work and presentation, teacher shall assign marks to each group, wherein all members of the group will get equal marks. (i) The first slide will explain the process of doing the experiment. (ii) In the second slide. Students will show the graph of measurement. (iii) In the third slide, they will list three observations from that study. Activity: Take four different sizes of same metal, preferable of same shape and give one piece to each group. Heat it uniformly on a hot plate. Keep a beaker of water witha thermometer immersed in it. Drop one hot metal into the water and record the temperature with time. Repeat the experiment for the other heated metal pieces of different sizes. (i) Plot a graph for the volume of the metal piece used v/s respective temperature change observed. (ii) Determine the heat capacity and specific heat of the metal used.
	All groups shall also do the following activity:

Activity No. 3	Note for the teachers for the activity: Make 3-4 groups among students and assign each group the activity of drawing one of the graphs given below. Provide a few days to complete the activity. One the specific day, each group has to make a ppt presentation of the following three slides. One the day of the presentation select a member from each group randomly to make the presentation. Based on the work and presentation, teacher shall assign marks to each group, wherein all members of the group will get equal marks.
	 (i) The first slide will explain the process of doing the experiment. (ii) In the second slide. Students will show the graph of measurement. (iii) In the third slide, they will list three observations from that study. Activity: Take ice cubes of different size and immerse in water and measure the temperature change with time and repeat the experiment. Graph the observations.

Thermal Physics and Electronics

Unit – 2

The Portion to be Covered

Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy. Properties and Applications. (**1 Hour**)

Maxwell's Thermodynamic Relations: Derivations and applications of Maxwell's Relations (1) Firstorder Phase Transitions with examples, Clausius - Clapeyron Equation (2) Values of Cp-Cv (3) Joule- Thomson Effect and Joule-Thomson coefficient and Derive an equation for Vander Walls gas. Attainment of low temperature by liquefaction of gases and adiabatic demagnetization.

(3 Hours)

Kinetic Theory of Gases: Distribution of Velocities: Maxwell-Boltzmann Law of Distribution of Velocities in an Ideal Gas: Mean, RMS and Most Probable Speeds. Degrees of Freedom, Law of Equipartition of Energy. Specific heats of Gases. (3 Hours)

Radiation: Blackbody radiation, spectral distribution, the concept of energy density and pressure of radiation, Wien's law, Wien's displacement law, Stefan-Boltzmann law, Rayleigh-Jeans law,

Ultraviolet Radiation catastrophe and Planck's law of radiation.

-	earning Outcomes and of the topic, students should be able to:			
SL No	TLO's	BL	CO	РО
i.	State Maxwell relations.	L1	2	1-6, 11-12
ii.	Give examples where Maxwells relations are used.	L1	2	1-6, 11-12

iii.	Explain the phase transition. Which is called as first order phase transition? Give Examples	L2	2	1-6, 11-12
iv.	State Clausius - Clapeyron Equation.	L1	2	1-6, 11-12
v.	Obtain an equation for difference in C _P - C _{V.}	L2	2	1-6, 11-12
vi.	State Joule-Thomson effect and Joule-Thomson coefficient.	L1	2	1-6, 11-12
vii.	Obtain an expression, giving the relation between pressure, volume and temperature for a real gas (Vander Waals gas).	L2	2	1-6, 11-12
viii.	Explain adiabatic demagnetization and how it is used to obtain low temperature by the liquidation of gases?	L2	2	1-6, 11-12
ix.	State Maxwell-Boltzmann Law of Distribution of Velocities inIdeal gases.	L1	2	1-6, 11-12
x.	Explain the mean RMS and most probable speeds in ideal gases.	L1	2	1-6, 11-12
xi.	Explain degrees of freedom associated with particles in an ideal gas?	L2	2	1-6, 11-12
xii.	Define the specific heat of a gas.	L1	2	1-6, 11-12
xiii.	Explain black body radiation and its spectral distribution.	L1	2	1-6, 11-12
xiv.	Explain the different laws used to describe different parts of the curves of a spectral distribution of black body radiation.	L2	2	1-6, 11-12
XV.	Define ultraviolet radiation catastrophe? Discuss its importance in the explanation of black body radiation.	L2	2	1-6, 11-12
xvi.	Define Planck's law of radiation and discuss how it could describe the whole black body radiation curve.	L2	2	1-6, 11-12
xvii.	High Order Problems.	L3	2	1-6, 11-12
	Teaching and Learning			

Teaching and Learning Methodology

Lecture/ PPT/ Videos/ Animations/ Role Plays/ Think-Pair-Share/ Predict-Observe-Explain/ Demonstration/ Concept mapping/ Case Studies examples/ Tutorial/ Activity/ Flipped Classroom/ Jigsaw/ Field based Learning/ Project Based Learning/ Mini Projects/ Hobby Projects/ Forum Theatre/ Dance/ Problem Based Learning/ Game Based Learning/ Group Discussion/ Collaborative Learning/ Experiential Learning / Self Directed Learning etc.

Assessment Techniques

One minute paper/ Predict-Observe-Explain/ Think-Pair-Share/ Class Test/ Quiz/ Crosswords/ Group Assessment/ Assignment/ Peer-to-Peer Evaluation/Seminar etc

	Suggested Activities (2 Hours)
Activity No. 4	 (i) Measuring the Solar Constant Materials: Simple flat sided Jar and Thermometer. Activity: Bottle containing water is exposed to solar radiation. The rise in temperature and time taken are noted. Calculate the heat absorbed by water and relate it to the output of the Sun. (ii) Thermo emf Materials: Suitable two dissimilar metal wires, voltage measuring device. Activity: In this experiment student will assemble the thermocouple and study the three effects namely, Seebeck, Peltier, and Thompson. (iii) Inverse square law of radiation Materials: A cardboard with a grid, cardboard with a hole, supporting clips, a ruler, candle. (iv) Activity: Students set the device. They count the lighted squares on the cardboard with the grid by varying the distance. And make necessary measurements and calculations to arrive at the inverse square law of radiation. Ref: Activity Based Physics Thinking Problems in Thermodynamics: Kinetic Theory http://www.physics.umd.edu/perg/abp/think/thermo/kt.htm
Activity No. 5	 Note for the teachers for the activity: Make 3-4 groups among students and assign each group the activity of drawing one of the graphs given below. Provide a few days to complete the activity. One the specific day, each group has to make a ppt presentation of the following three slides. One the day of the presentation select a member from each group randomly to make the presentation. Based on the work and presentation, teacher shall assign marks to each group, wherein all members of the group will get equal marks. (i) The first slide will explain the process of doing the experiment. (ii) In the second slide. Students will show the graph of measurement. (iii) In the third slide, they will list three observations from that study. Activity: Take two dissimilar metal wires. Spot weld them forming two junctions. Dip one junction in ice and heat the other junction with a burner. Plot a graph of time of heating v/s Thermo EFM generated in the voltmeter.
Activity No. 6	 Note for the teachers for the activity: Make 3-4 groups among students and assign each group the activity of drawing one of the graphs given below. Provide a few days to complete the activity. One the specific day, each group has to make a ppt presentation of the following three slides. One the day of the presentation select a member from each group randomly to make the presentation. Based on the work and presentation, teacher shall assign marks to each group, wherein all members of the group will get equal marks. (i) The first slide will explain the process of doing the experiment. (ii) In the second slide. Students will show the graph of measurement. (iii) In the third slide, they will list three observations from that study.

	Activity: Make 4 groups and give different-sized balloons to each group. Fit different- sized nozzles into the mouth of the large balloons. Measure the temperature or the EMF generated using a thermocouple placed at the mouth of the nozzle as the pressurised gas is released. Plot a graph of time v/s temperature. Vary the volume of the balloon and repeat the experiment. Plot the graph of volume v/s temperature difference created.					
	Thermal Physics and Electronic	cs				
	Unit – 3					
	The Portion to be Covered					
Characte	nductor devices : Review of Intrinsic and Extrinsic semiconduceristics and Parameters, Diode approximations, Half-wave recode voltage regulators: Regulator circuit with no load, Loaded R	tifier,	Full-wa			
	Transistors : Basics of Bipolar Junction Transistors (BJT), ommon Emitter and Common Collector Characteristics. Field		-			
characte	ristics. Transistor as an Amplifier and Oscillator.			(6 hours)		
-	Topic Learning Outcomes At the end of the topic, students should be able to:					
SL No	TLO'S B CO PO L PO					
i.	Define Semiconductors and Band Gap. Explain on what basisthey are classified as intrinsic and extrinsic.	L2	3	1-6, 11-12		
ii.	Define PN junction. Explain it's functioning in forward andreverse bias.	L1	3	1-6, 11-12		
	Explain the approximation used in a real diode with respect to an ideal PN Junction?					
iii.		L2	3	1-6, 11-12		
iii. iv.		L2 L1	3	1-6, 11-12 1-6, 11-12		
	an ideal PN Junction? With a schematic diagram, explain half wave and full wave					
iv.	an ideal PN Junction? With a schematic diagram, explain half wave and full wave rectifiers. Define a Zener diode and explain how it is different from an	L1	3	1-6, 11-12		

viii.	commo	ompare the V-I curve of common base common emitter and pommon collector BJT curves while explaining their working trinciples.L23					
ix.	Define	Define FET? Give its characteristics. L1 3 1-6, 11-1					
х.	-	Explain how a transistor can be used as an amplifier and an oscillator using a circuit diagram. L2 3					
xi.	High C	High Order Problems.L331-6, 11-12					
		Teaching and Learning Methodology					
Demons Jigsaw/ Theatre/	stration/ Field b / Dance/	Videos/ Animations/ Role Plays/ Think-Pair-Share/ Concept mapping/ Case Studies examples/ Tutorial/ Ac ased Learning/ Project Based Learning/ Mini Projects Problem Based Learning/ Game Based Learning/ Group iential Learning / Self Directed Learning etc.	tivity/ / Hot	' Flipped by Proj	Classroom/ ects/ Forum		
		Assessment Techniques					
		er/ Predict-Observe-Explain/ Think-Pair-Share/ Class Te ent/ Assignment/ Peer-to-Peer Evaluation/Seminar etc	est/ Qı	uiz/ Cros	swords/		
		Suggested Activities (2 Hours)					
Activity	Activity No. 7 Wire a regulated DC power supply on a bread board or groove board to give a regulated output voltage of ± 5 V; ± 15 V; Dual power output : ± 5 V; Dual power output : ± 15 V. Use: 3-pin voltage regulators.						
		Components required:					
	1. Step down transformer- 1 No. (5 V tapping, 100 – 500 mA current rating), BY127 semiconductor diodes – 4 Nos, Inductor -1, Capacitor - 1, 3 pin 5V regulator-1						
	Search for circuit diagram in books/net.						
Note for the teachers for the activity: Make 3-4 groups among students and assign e group the activity of drawing one of the graphs given below. Provide a few days complete the activity. One the specific day, each group has to make a ppt presentation the following three slides. One the day of the presentation select a member from exigroup randomly to make the presentation. Based on the work and presentation, teac shall assign marks to each group, wherein all members of the group will get equations.					few days to presentationof per from each ation, teacher		
	(i) The first slide will explain the process of doing the experiment.(ii) In the second slide. Students will show the graph of measurement.(iii) In the third slide, they will list three observations from that study.						

	Activity: Form 3 groups and tell them to make a DC supply of low current of different voltages like 5V, 10V, and 15V on a breadboard
Activity No. 8	 (i) Learn to identify the terminals of different types (packages) of BJTs. (ii) In the case of power transistors, learn how to fix a heat sink for the transistor. (iii) Learn the difference between BJT and FET in its operational characteristics.
Activity No. 9	Note for the teachers for the activity: Make 3-4 groups among students and assign each group the activity of drawing one of the graphs given below. Provide a few days to complete the activity. One the specific day, each group has to make a ppt presentation of the following three slides. One the day of the presentation select a member from each group randomly to make the presentation. Based on the work and presentation, teacher shall assign marks to each group, wherein all members of the group will get equal marks.
	 (i) The first slide will explain the process of doing the experiment. (ii) In the second slide. Students will show the graph of measurement. (iii) In the third slide, they will list three observations from that study. Activity: Take any 3 diode and assign one to each group. Measure its resistance when
	dipped in ice and heating the ice till it boils. Using this data, plot calibration curve of temperature v/s resistance and also the cooling curve of temperature V/s time for the diode by each group.

	Thermal Physics and Electronic	:S			
	Unit – 4				
	The Portion to be Covered				
ofOp-Ai	Electronics : Integrated Circuits (Analog and Digital), Operational Amplifier, Ideal characteristics of Op-Amp, Inverting and Non-Inverting Configurations. Applications- Voltage Follower, Addition and Subtraction. (4 hours)				
System,	Digital: Switching and Logic Levels, Digital Waveform. Number Systems: Decimal Number System, Binary Number System, Converting Decimal to Binary, Hexadecimal Number System: Converting Binary to Hexadecimal, Hexadecimal to Binary. (3 hours)				
AND Ga and NO	Boolean Algebra Theorems: De Morgan's theorem. Digital Circuits: Logic gates, NOT Gate, AND Gate, OR Gate, NAND Gate, NOR Gate, Algebraic Simplification, Implementation of NAND and NOR functions. (4 hours)				
-	Topic Learning Outcomes At the end of the topic, students should be able to:				
SL No	TLO's	BL	CO	РО	
i.	Define op-amps and give the characteristics of an ideal op- amp.	L 1	4	1-6, 11-12	

ii.	Explains an inverting and non-inverting configuration of typical op-amps, with a schematic diagram.	L 2	4	1-6, 11-12
iii.	Explain how op-amps can be used as a voltage follower, with a schematic diagram and with relevant expressions.	L 2	4	1-6, 11-12
iv.	Explain how op-amps can be used as a voltage follower, adder and subtractor, with a schematic diagram and with relevant expressions.	L 2	4	1-6, 11-12
v.	Give different digital wave forms and explain how one can visualize the switching and logic levels.	L 1	5	1-6, 11-12
vi.	Write any four-digit numbers other than zero in the decimal number system and convert that into binary and hexadecimal.	L 2	5	1-6, 11-12
vii.	Write any number in a Binary System of 8 digits other than zero and convert it into decimal and hexadecimal.	L 2	5	1-6, 11-12
viii.	Write any number in the hexadecimal system of 4 digits other than zero and converted it into a binary and decimal number.	L 2	5	1-6, 11-12
ix.	Give simplified diagram for a given Boolean circuit diagram oflogic gates, and verify using the De-Morgans theorem.	L 2	5	1-6, 11-12
X.	Why are X-NOR gates called Universal Gates?	L 2	5	1-6, 11-12
xi.	High Order Problems.	L 3	4, 5	1-6, 11-12
	Teaching and Learning Methodology			
Demons Jigsaw/ Theatre	/ PPT/ Videos/ Animations/ Role Plays/ Think-Pair-Share/ stration/ Concept mapping/ Case Studies examples/ Tutorial/ Ac Field based Learning/ Project Based Learning/ Mini Projects / Dance/ Problem Based Learning/ Game Based Learning/ Group g/ Experiential Learning / Self Directed Learning etc.	tivity/ / Hoł	/ Flipped by Proj	Classroom/ ects/ Forum
	Assessment Techniques			
	nute paper/ Predict-Observe-Explain/ Think-Pair-Share/ Class Te Assessment/ Assignment/ Peer-to-Peer Evaluation/Seminar etc	est/ Qı	uiz/ Cros	swords/
	Suggested Activities (2 Hours)			
Activity No. 10 Learn how to implement logic functions (AND, OR, NOT) using just diodes and resistors.				

	With a circuit diagram show how different types of gates can be built by X-NORgates.				
Activity No. 11	Operational Amplifiers				
	(i) (ii) (iii)	(ii) Learn the different types of op-amps used for different applications.			
Activity No. 12	(i)	A man has to take a wolf, a goat, and some cabbage across a river. His rowboat has enough room for the man plus either the wolf or the goator the cabbage. If he takes the cabbage with him, the wolf will eat the goat. If he takes the wolf, the goat will eat the cabbage. Only when the man is present are the goat and the cabbage safe from their enemies. All the same, the man carries wolf, goat, and cabbage across the river. How? Write the truth table for the above story and implement using gates.			
	(ii)	A locker has been rented in the bank. Express the process of opening the locker in terms of digital operation.			
	(iii)	A bulb in a staircase has two switches, one switch being at the ground floor and the other one at the first floor. The bulb can be turned ON and also can be turned OFF by and one of the switches irrespective of the state of the other switch. The logic of switching of the bulb resembles.			

Textbooks				
Sl No	Title of the Book			
1.	Electronic Devices and Circuits, David A. Bell, 2004, PHI, New Delhi			
2.	2. Integrated Electronics, Jacob Millman and CC Halkias			
3.	Digital Fundamentals, Floyd, 2001, PHI, New Delhi			

	References Books		
Sl No	SI No Title of the Book		
1.	Heat and Thermodynamics, M.W. Zemansky, Richard Dittman, 1981, McGraw-Hill.		
2.	Thermal Physics, S. Garg, R. Bansal and Ghosh, 2nd Edition, 1993, Tata McGraw-Hill		
3.	A Treatise on Heat, Meghnad Saha, and B.N.Srivastava, 1958, Indian Press		
4.	Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer.		
5.	Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. 1988,		
	Narosa.		
6.	An Introduction to Thermal Physics, Daniel V Schroeder, 2020, Oxford University Press		

Formative Assessment				
	Assessment	Marks		
	Internal Assessment	10		
	Activity	10		
REU based Group Activity10(Conduction, Report, Presentation)				10
Scie	ence Communication (Seminar/Poster etc)	10		
	Total	40		
	List of Experiments to be	performed in the Laboratory		
	(Minimum 8 experime	ents are to be conducted)		
1.	Mechanical Equivalent of Heat by Callender	er and Barne's method		
2.				
3.				
4.	Determination of Stefan's constant/ Verification of Stefan's law			
5.	Variation of thermo-emf across two junctions of a thermocouple with temperature			
6.	Verification of Clausius –Clapeyron equation and determination of specific enthalpy			
 7. V-I Characteristics of Silicon & Germanium PN Junction diodes (FB & RB) OR V-I Characteristics of Zener Diode and voltage regulator 				
8.				
9.				
10.	 Non-inverting and Inverting op-amp circuits OR Voltage follower, Adder and Subtractor circuits 			
11.	Truth table verification of logic gates using OR	g TTL 74 series ICs.		
	Logic Gates; Combinational Circuits; Sequ	iential Circuits		

	Reference Book for Laboratory Experiments		
Sl No	Title of the Book		
1.	Basic Electronics Lab (P242) Manual 2015-16, National Institute of Science Education and Research, Bhubaneswar, 2015.		
2.	 Suggested Readings: 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co.,Ltd., London, 1962, 9e. 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt.Ltd., 2015, 1e. 		

SYLLABUS FOR OPEN ELECTIVES

(SEM I to IV)

3 Credits: 3 Lectures + 1 Tutorial

SYLLABUS FOR OPEN ELECTIVE

ENERGY SOURCES

Time: 2 hrs./week + 01 Hr tutorial

		No. of
TI	Non Denemable energy genneeg	lectures
Unit-I	Non-Renewable energy sources	
	Chapter-1: Introduction	
	Energy concept-sources in general, its significance & necessity. Classification of energy sources: Primary and Secondary energy, Commercial and Non-commercial energy, Renewable and Non-renewable energy, Conventional and Non-conventional energy, Based on Origin-Examples and limitations. Importance of Non-commercial energy resources.	04
	Chapter-2: Conventional energy sources	
	Fossil fuels & Nuclear energy- production & extraction, usage rate and limitations. Impact on environment and their issues& challenges. Overview of Indian & world energy scenario with latest statistics- consumption & necessity. Need of eco-friendly & green energy & their related technology.	09
	Total	13
Unit-II	Renewable energy sources	
	Chapter-1: Introduction:	
	Need of renewable energy, non-conventional energy sources. An overview of	
	developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean	
	Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity.	05
	Chapter 2 : Solar energy:	
	Solar Energy-Key features, its importance, Merits & demerits of solar energy, Applications of solar energy. Solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell -brief discussion of each. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and	08
	sun tracking systems. Total	13
Unit-III		15
Unit-III	Chapter-3: Wind and Tidal Energy harvesting:	
	Fundamentals of Wind energy, Wind Turbines and different electrical machines in wind turbines, Power electronic interfaces, and grid interconnection topologies. Ocean Energy Potential against Wind and Solar, Wave Characteristics and Statistics, Wave Energy Devices. Tide characteristics and Statistics, Tide Energy Technologies, Ocean Thermal Energy.	08
	Chapter-4 : Geothermal and hydro energy	
	Geothermal Resources, Geothermal Technologies.	02
	Hydropower resources, hydropower technologies, environmental impact of hydro power sources.	03
	Carbon captured technologies, cell, batteries, power consumption	01
	Total	13

Acti	vity for tutorial classes 01 lectures/week
1. De	emonstration of on Solar energy, wind energy, etc, using training modules at
	Labs.
2. Co	onversion of vibration to voltage using piezoelectric materials.
3. Co	onversion of thermal energy into voltage using thermoelectric (using
tł	ermocouples or heat sensors) modules.
4. Pr	oject report on Solar energy scenario in India
5. Pr	oject report on Hydro energy scenario in India
6. Pr	oject report on wind energy scenario in India
7. Fi	eld trip to nearby Hydroelectric stations.
8. Fi	eld trip to wind energy stations like Chitradurga, Hospet, Gadag, etc.
9. Fi	eld trip to solar energy parks like Yeramaras near Raichur.
10. V	/ideos on solar energy, hydro energy and wind energy.
Refe	rence Books:
	. Non-conventional energy sources - G.D Rai - Khanna Publishers, New
	Delhi
	2. Solar energy - M P Agarwal - S Chand and Co. Ltd.
	B. Solar energy - Suhas P Sukhative Tata McGraw - Hill Publishing Company
	Ltd.
2	. Godfrey Boyle, "Renewable Energy, Power for a sustainable future", 2004,
	Oxford University Press, in association with The Open University.
	5. Dr. P Jayakumar, Solar Energy: Resource Assessment Handbook, 2009
	5. J.Balfour, M.Shaw and S. Jarosek, Photovoltaics, Lawrence J Goodrich
	(USA).
	/. http://en.wikipedia.org/wiki/Renewable_energy

Climate Science

Time: 2 hrs./week + 01 Hr tutorial

Module 1:	Atmosphere	(13 hours)
Module 1.	-	(15 hours)
	Atmospheric Science (Meteorology) as a multidisciplinary science. Physical	
	and dynamic meteorology, Some terminology, difference between weather	
	and climate, weather and climate variables, composition of the present	
	atmosphere: fixed and variable gases, volume mixing ratio (VMR), sources	
	and sinks of gases in the atmosphere. Green house gases. Structure (layers)	
	of the atmosphere. Temperature variation in the atmosphere, temperature	
	lapse rate, mass, pressure and density variation in the atmosphere.	
	Distribution of winds.	
Module 2:	Climate Science	(13 hours)
	Overview of meteorological observations, measurement of : temperature,	× ,
	humidity, wind speed and direction and pressure. Surface weather stations,	
	upper air observational network, satellite observation. Overview of clouds	
	and precipitation, aerosol size and concentration, nucleation, droplet growth	
	and condensation (qualitative description). Cloud seeding, lightning and	
	discharge. Formation of trade winds, cyclones.	
	Modelling of the atmosphere: General principles, Overview of General	
	Circulation Models (GCM) for weather forecasting and prediction.	
	Limitations of the models.	
	R and D institutions in India and abroad dedicated to climate Science,	
	NARL, IITM, CSIR Centre for Mathematical Modeling and Computer	
	Simulation, and many more	
Module 3:	Global Climate Change	(13 hours)
	Green house effect and global warming, Enhancement in concentration of	
	carbon dioxide and other green house gases in the atmosphere, Conventional	
	and non-conventional energy sources and their usage. EL Nino/LA Nino	
	Southern oscillations.	
	Causes for global warming: Deforestation, fossil fuel burning,	
	industrialization. Manifestations of global warming: Sea level rise, melting	
	of glaciers, variation in monsoon patterns, increase in frequency and	
	intensity of cyclones, hurricanes, tornadoes.	
	Geo-engineering as a tool to mitigate global warming? Schemes of geo-	
	engineering.	
	Activities to be carried out on Climate Science:	
	1. Try to find answer to the following questions:	
	(a) Imagine you are going in a aircraft at an altitude greaten than	
	100 km. The air temperature at that altitude will be greater than	
	200°C. If you put your hands out of the window of the aircraft,	
	you will not feel hot.	
	(b) What would have happened if ozone is not present in the	
	stratosphere.	
	2. Visit a nearby weather Station and learn about their activities.	
	3. Design your own rain gauge for rainfall measurement at your place.	

4. Learn to determine atmospheric humidity using wet bulb and dry bulb thermometers.
 Visit the website of Indian Institute of Tropical Meteorology (IITM), and keep track of occurrence and land fall of cyclone prediction.
6. Learn about ozone layer and its depletion and ozone hole.
 Keep track of melting of glaciers in the Arctic and Atlantic region through data base available over several decades.
8. Watch documentary films on global warming and related issues (produced by amateur film makers and promoted by British Council and BBC).
References:
 Basics of Atmospheric Science – A Chndrashekar, PHI Learning Private Ltd. New Delhi, 2010.
 Fundamentals of Atmospheric Modelling- Mark Z Jacbson, Cambridge University Press, 2000.

•

Astronomy

Time: 2 hrs./week + 01 Hr tutorial

	Content	Hrs
	Unit – 1 -History and Introduction	
Chapter 1	Ancient Astronomy Greek Observations, Sumerian Observations, Mayan Observations, Arabic Observations ,Chinese Observations	2
Chapter 2	Indian Astronomy Vedic Astronomy, Ancient Astronomy – Aryabhata, Varahamihira, Bhaskara Astronomy in Indian Scriptures, Precession of the Equinox,Celebrations of Equinox	2
Chapter 3	Medieval & Modern Astronomy Invention of Telescopes, Models of the Solar System & Universe, Observations by Tycho Brahe, Kepler, Galileo, Herschel and Other,Modern Astronomy	2
Chapter 4	Optical tools for Astronomy Pin Hole, Binoculars, Telescopes & Imaging.	1
Chapter 5	Mathematical Methods of Observations Angular Measurement, Trigonometric functions, Stellar Parallax	1
Chapter 6	Observational Terminologies Cardinal Directions, Azimuth, Altitude, Measurements using Compass and Hand. Equatorial Co-ordinates, Light years, Magnitude, Colors etc.	2
	Unit – 2: Unit 2: Observations of the Solar System	
Chapter 7.	The Sun Ecliptic and the Orientation of the Earth, Seasons - Solstices and Equinox, Observations of the Sun from Earth during seasons. Eclipses, Zero-shadow day, Sunspots	1
Chapter 8	The Moon Earth-Moon system – Phases, Lunar Eclipses, Ecliptic and Lunar Orbital Plane – Nodes, Lunar Month, Full Moon Names	1
Chapter 9.	Inner Planets: Mercury & Venus Observational History, Observational Windows, Appearance, Apparitions, Elongations, Superior Conjunctions, Inferior Conjunctions, Transits.	2
Chapter 10	Outer PlanetsOuter Planets: Mars, Jupiter & SaturnObservational History.Observational Windows, Appearance, Frequency ofOppositions Oppositions, Conjunctions, Moons Eclipses.Galilean Moons,Saturn's Rings	2

Unit III Major Astronomy Observations		
Chapter 11	March to June Prominent Stars and Constellations Visible during this period, Methods of Spotting.	2
Chapter 12	June to September Prominent Stars and Constellations Visible during this period, Methods of Spotting.	2
Chapter 13	September to December Prominent Stars and Constellations Visible during this period, Methods of Spotting.	2
Chapter 14	December to March Pr ominent Stars and Constellations Visible during this period, Methods of Spotting.	2

Reference Books:

1. The Stargazer's Guide - How to Read Our Night Sky by Emily Winterburn

2. A guide to the Night Sky – Beginner's handbook by P.N. Shankar

3. The Complete Idiot's guide to Astronomy by Christopher De Pree and Alan Axelrod

Text Books

- 1. P. N. SHANKAR A GUIDE TO THE NIGHT SKY https://www.arvindguptatoys.com/arvindgupta/nightskyshankar.pdf
- 2. BimanBasu, Joy of Star Watching, National Book Trust of India 2013

References Books

Christopher De Pree : The Complete Idiot's Guide to Astronomy, Penguin USA, 2008

Emily Winterburn ,The Stargazer's Guide: How to Read Our Night Sky, Constable and Robinson, 2008

Activities

Sl No	Experiment
1	Measuring Seasons using Sun's Position.
2	Measuring Distance using Parallax
3	Estimation of the Stellar Diameter using Pin Hole
4	Measuring Height of an Object Using Clinometer.
5	Star spotting using constellation maps
6	Constellation spotting using Skymaps
7	Estimation of 'Suitable Periods' to observe deep sky objects using Planisphere.
8	Estimation of the Size of the Solar System in using Light Years.
9	Identification of Lunar Phases across a year.
10	Measuring Constellation of the Sun using Night Skymaps or Planispheres.

Medical Physics

Time: 2 hrs./week + 01 Hr tutorial

Unit I:	Human Anatomy and Physiology Overview of human anatomy - cells, cell structure, type of cells and their functions, tissues, organs, and their functions. Different systems in the human body, their structure and function, physiological properties of the circulatory system, digestive system, respiratory system, reproductive system, excretory system, endocrine system and nervous system	(13 hours)
Unit II:	Physics of Medical DiagnosticsPrinciple of production of X-rays. Use of X-rays in medical diagnosis, X-ray imagingsystems. Computed Tomography (CT): principle and generation of CT. MagneticResonance Imaging (MRI): basic principle and image characteristics. UltrasoundImaging: Interaction of sound waves with body tissues, production of ultrasound,transducers, acoustic coupling, image formation, modes of image display and colorDoppler.	(13 hours)
Unit III:	Physics of Radiotherapy Clinical aspects of radiation therapy: Biological basis of radiotherapy, radiation sources, radiation dose, time dose fractionation. External beam radiation therapy, radiation therapy modalities, production of radioisotopes, use of radioisotopes in therapy, particle and ion beam radiotherapy. Brachytherapy - principle of brachytherapy and classification of brachytherapy techniques.	(13 hours)
	 Class Room Activities Unit I: Students can demonstrate the shape, size, positions and functions of different organs in the body with the help of models. Unit II: The use of X-rays in the diagnosis of the fractured bone can be demonstrated with the help of a gamma source and a gamma ray survey meter. As the density of materials between the source and the detector changes the reading on the meter (or intensity of the beefing sound) changes. Unit III: (i) Students can be asked to list out different type of cancers and possible causative factors. They can be asked to list out the healthy practices to reduce the risk of cancers. (ii) As there will be students from different disciplines in the OE course, group discussion can be arranged to discuss about their programme and outcome. This will be an opportunity for the students to know about other disciplines. Other related activities/projects: Visit to nearby hospitals/diagnostic centers to study the working of X-ray machines. Visit to ultrasound diagnostic centers to study the principle and use of ultrasound in diagnosis. Project on principle and use of X-ray films in imaging. Visit to radiotherapy centers to study the modalities of radiotherapy. 	

Text Books

1. C. H. Best and N. B. Taylor. A Test in Applied Physiology. Williams and Wilkins Company, Baltimore, 1999.

2. C. K. Warrick. Anatomy and Physiology for Radiographers. Oxford University Press, 2001.

3. Jerrold T. Bushberg. The Essential Physics for Medical Imaging (2nd Edition). Lippincott Williams & Wilkins, 2002.

4. Jean A. Pope. Medical Physics: Imaging. Heinemann Publishers, 2012.

5. Faiz M. Khan and Roger A. Potish. Treatment Planning in Radiation Oncology. Williams and Wilkins, USA, 2003.

6. D. Baltas. The physics of modern brachytherapy for oncology. Taylor and Francis, 2007.

Reference Books

1. J. R. Brobek. Physiological Basis of Medical Practice. Williams and Wilkins, London, 1995.

2. Edward Alcamo, Barbara Krumhardt. Barron's Anatomy and Physiology the Easy Way. Barron's Educational Series, 2004.

3. Lippincott, Anatomy and Physiology. Lippincott Williams & Wilkins, 2002.

4. W. E. Arnould Taylor. A textbook of anatomy and physiology, Nelson Thornes, 1998.

5. G. S. Pant. Advances in Diagnositc Medical Physics. Himalaya Publishing House, 2006.

6. Sabbahaga, Diagnositc Ultrasound applied to OBG. Maryland, 1980.

7. Faiz M Khan. The Physics of Radiation Therapy (3rd edition). Lippincott Williams& Wilkins, USA, 2003.

8. Jatinder R. Palta and T. Rockwell Mackie. Intensity Modulation Radiation Therapy. Medical Physics publishing, Madison, Wisconsin, 2003.

9. AAPM Report No. 72. Basic Applications of Multileaf collimators, AAPM, USA, 2001.

10. AAPM Report No. 91. Management of Respiratory motion in radiation oncology, 2006.

11. CA Joslin, A. Flynn, E. J. hall. Principles and Practice of Brachytherapy. Arnold publications, 2001.

12. Peter Hoskin, Catherine Coyle. Radiotherapy in Practice. Oxford University Press, 2011.

13. W. R. Handee. Medical Radiation Physics. Year Book Medical Publishers Inc., London, 2003.

14. Donald T. Graham, Paul J. Cloke. Principles of Radiological Physics. Churchill Livingstone, 2003.

15. Thomas S. Curry. Christensen', Physics of Diagnostic Radiology (4th Edition). Lippincott Williams & Wilkins, 1990.

16. Madison. MRI – Perry Sprawls – Medical Physics Publishing. Wisconsin, 2000.

17. Steve Webb. The Physics of Three–Dimensional Radiotherapy. Institute of Physics Publishing, Bristol and Philadelphia, 2002.	
18. Radiation oncology physics: A Handbook for teachers and students. IAEA publications, 2005.	
19. F. M. Khan. The Physics of Radiation Therapy (3rd Edition), Lippincott Williams and Wilkins, U.S.A., 2003.	

•

OPTICAL INSTRUMENTS (III SEM)

	Time: 3 hrs./week Max Ma	rks: 60
Unit 1.	Basics of Optics Scope of optics, optical path, laws of reflection and refraction as per Fermat's principle, magnifying glass, Lenses (thick and thin), convex and concave lenses, Lens makers formulae for double concave and convex lenses, lens equation. Focal and nodal points, focal length, image formation, combination of lenses,	13
	Dispersion of light: Newton's experiment, angular dispersion and dispersion power.	
	Dispersion without deviation. (Expressions need not be derived, but have to be discussed qualitatively).	
Unit 2.	Camera and microscopes	14
	Human eye (constitution and working), Photographic camera (principle, construction and working), construction, working and utilities of	
	Simple microscopes, Compound microscope, Electron microscopes, Binocular microscopes	
	Self study Experimental determination of magnifying power of a microscope. (Construction part can be discussed through block diagrams)	
Unit 3.	Telescopes and Spectrometer Construction, working and utilities of Astronomical telescopes Terrestrial telescopes Reflecting telescopes, Construction, working and utilities of Eyepieces or Oculars (Huygen, Ramsden's, Gauss) Spectrometer - Construction, working and utilities, measurement of refractive index. Self study Telescopes used at different observatories in and outside India.	13
	 Activities: Find position and size of the image in a magnifying glass and magnificatio Observe rain bows and understand optics. Create a rainbow. Find out what makes a camera to be of good quality. Observe the dispersion of light through prism. Make a simple telescope using magnifying glass and lenses. Learn principle of refraction using prisms. Check bending of light in different substances and find out what matters here. Learn about different telescopes used to see galaxies and their ranges. Many more activities can be tried to learn optics by going through you tubes and webias as https://spark.iop.org, http://www.yenka.com, https://publiclab.org etc. 	

SPORTS SCIENCE (III Sem) Time: 3 hrs./week

	Time: 3 hrs./week Max Marks:	60
Conte	ent (Use maths of 10 th Std only – Only qualitative discussion)	Hrs
	Unit - 1	
Chapter No. 1	Measurement : Physical quantities. Standards and Units. International system of Units. Standards of time, length and mass. Precision and significant figures.	04
Chapter No. 2	Newton's laws of motion : Newton's first law. Force, mass. Newton's second law. Newton's third law. Mass and weight. Applications of Newton's laws.	03
Chapter No. 3	Projectile motion : Shooting a falling target. Physics behind Shooting, Javelin throw and Discus throw.	03
Topics for self study (If any)	https://www.real-world-physics-problems.com/physics-of-sports.html	
Unit - 2		
Chapter No. 4.	Conservation laws : Conservation of linear momentum, collisions – elastic and inelastic. Angular momentum. (Physics behind Carom, Billiards, Racing)	04
Chapter No. 5.	Centre of mass: Physics behind Cycling, rock climbing, Skating,	02
Chapter No. 6.	Gravitation: Origin, Newton's law of gravitation. Archimedes's principle, Buoyancy (Physics behind swimming)	04
Topics for self study (If any)	Archimedes' Principle: Made EASY Physics in You tube	
Unit - 3		
Chapter No.7	Food and Nutrition: Proteins, Vitamins, Fat, Blood pressure. Problems due to the deficiency of vitamins.	04
Chapter No. 8	Energy: Different forms of Energy, Conservation of mass-energy.	03
Chapter No . 9	Physical exercises: Walking, Jogging and Running, Weight management.	03
Topics for self study (If any)	<u> 10 Best Exercises for Everyone – Healthline</u>	
	Suggested Activities	
Activity No. 1	Identify the methods of measurement of time, length and mass from ancient time and build models for them.	02
	Reference : <u>History of measurement - Wikipedia</u> https://en.wikipedia.org > wiki > History_of_measurem	
Activity No. 2	Identify Physics principles behind various Sports activities.	01

	https://www.real-world-physics-problems.com/physics-of-sports.html	
Activity No. 3	List the difficulties experienced in Gymnastics, Cycling and weight lifting.	02
Activity No. 4	List the difficulties experienced in swimming.	01
Activity No. 3	List the difficulties experienced in Gymnastics, Cycling and weight lifting.	02
Activity No. 4	List the difficulties experienced in swimming.	01
	Learn breathing exercises.	
Activity No. 5	Reference : 1) <u>Simple Breathing Exercise for Beginners Swami Ramdev</u> 2) https://www.yogajournal.com	02
Activity No.6	Write an essay on Physical health v/s Mental health or conduct a debate on Physical health v/s Mental health.	01

Text Books

Sl No	Title of the Book	Authors Name	Publisher	Year of Publication
1	Physics for Entertainment	Yakov Perelman	Createspace Independent Pub.	
2	Physics Everywhere	Yakov Perelman	Prodinnova	2014
3	Mechanics for Entertainment	Yakov Perelman	Prodinnova	2014
4	Handbook of Food and Nutrition	M.Swaminathan	Bangalore Press 2012	2012
5	Food Science	B. Srilakshmi	New Age International Pub	2015

References Books

Sl No	Title of the Book	Authors Name	Publisher	Year of
				Publication
1	Physics	Resnick, Halliday	Wiley Student	
		and Krane, Vol 1	Edition.	
2	For the love of Physics	Walter Lewin	Taxmann	2012
			Publications Private	
			Limited	
3	An Introduction to the	VassiliosMcInnesS	CreateSpace	2013
	Physics of Sports	pathopoulos	Independent	
			Publishing Platform	
Interne	et resources	,	1	1
https://	www.topendsports.com/bi	omechanics/physics.htr	<u>n</u>	
https://	www.real-world-physics-p	roblems.com/physics-of	<u>f-sports.html</u>	
https://	www.healthline.com/			

https://www.mayoclinic.org/ https://www.who.int/news-room/

NANOTECHNOLOGY

Time: 2 hrs./week + 01 Hr tutorial

Unit 1:	Introduction to nanomaterials	
Omt 1.	Length scales in physics, Nanostructures: 1D, 2D and 3Dnanostructures (nano dots, thin films,nanowires, nanorods), Band structure and density of states of materials at nanoscale, Size Effects in nano systems, Quantum confinement: Applications of Schrodinger equationInfinite potential well, potential step, potential box, quantum confinement of carriers in 3D,2D, 1D nanostructures and its consequences.	(13hours)
Unit 2:	Synthesis and Characterization of nanostructure materials	
	Top down and Bottom up approach, Photolithography. Ball milling. Gas phase condensation.Vacuum deposition. Physical vapor deposition (PVD): Thermal evaporation, E-beamevaporation, Pulsed Laser deposition. Chemical vapor deposition (CVD). Sol-Gel. Electrodeposition. Spray pyrolysis. Hydrothermal synthesis. Preparation through colloidal methods.MBE growth of quantum dots. X-Ray Diffraction. Optical Microscopy. Scanning ElectronMicroscopy. Transmission Electron Microscopy. Atomic Force Microscopy. ScanningTunneling Microscopy.	(13 hours)
Unit 3:	Properties and applications of nanomaterials	
	Coulomb interaction in nanostructures. Concept of dielectric constant for nanostructures andcharging of nanostructure. Quasi-particles and excitons. Excitons in direct and indirect bandgap semiconductor nanocrystals. Quantitative treatment of quasiparticles and excitons, charging effects. Radiative processes: General formalization-absorption, emission andluminescence. Optical properties of heterostrctures and nanostructures. Applications ofnanoparticles, quantum dots, nanowires and thin films for photonic devices (LED, solarcells). Nanomaterial Devices: Quantum dots heterostructure lasers, optical switching andoptical data storage. Magnetic quantum well; magnetic dots - magnetic data storage.	(13 hours)
Referen	nces Books:	
 ≻ S.K. K ≻ K.K. Technolog ≻ Richar ≻ M. H 	oole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley India Pvt. Ltd.). Julkarni, Nanotechnology: Principles & Practices (Capital Publishing Company) Chattopadhyay and A. N. Banerjee, Introduction to Nanoscience and gy(PHI Learning Private Limited). d Booker, Earl Boysen, Nanotechnology (John Wiley and Sons). osokawa, K. Nogi, M. Naita, T. Yokoyama, Nanoparticle Technology k(Elsevier, 2007).	
➤ Introduction to Nanoelectronics, V.V. Mitin, V.A. Kochelap and M.A. Stroscio,		
	nbridge University Press. t Bhushan, Springer Handbook of Nanotechnology (Springer-Verlag, Berlin,	

Student Activities:

1. Synthesis of metal nanoparticles by chemical route.

- 2. Synthesis of semiconductor nanoparticles.
- 3. XRD pattern of nanomaterials and estimation of particle size.
- 4. To study the effect of size on color of nanomaterials.
- 5. Growth of quantum dots by thermal evaporation.

6. Prepare a disc of ceramic of a compound using ball milling, pressing and sintering, and study its XRD.

7. Fabricate a thin film of nanoparticles by spin coating (or chemical route) and studytransmittance spectra in UV-Visible region.

8. Prepare a thin film capacitor and measure capacitance as a function of temperature orfrequency.

9. Visit to nearby research labs to study the working of XRD, SEM, UV-Visible

Spectrophotometer instruments

 $10.\,$ Visit to nearby research labs for project work and interaction with scientists at IISC, JNCSR, Universities etc.

ELECTRICAL INSTRUMENTS

Time: 2 hrs./week + 01 Hr tutorial

	Content	Hrs
	Unit - 1	
Chapter No. 1	Voltage and current sources, Kirchoff's current and voltage laws, loop and nodal analysis of simple circuits with dc excitation. Ammeters, voltmeters: (DC/AC)	03
Chapter No. 2	Representation of sinusoidal waveforms, peak and RMS values, power factor. Analysis of single-phase series and parallel R-L-C ac circuits. Three-phase balanced circuits, voltage and current relations in star and delta connections. Wattmeters: Induction type, single phase and three phase wattmeter, Energy meters: AC. Induction type single phase and three phase energy meter	05
Chapter No. 3	Instrument Transformers: Potential and current transformers, ratio and phase angle errors, phasor diagram, methods of minimizing errors; testing and applications.	05
Topics for self study (If any)	Types of switches and Circuits, Safety precautions and rules in handling electrical appliances, Electric shock, first aid for electrical shocks, Fuses, MCB, ELCB and Relays, Filament lamp, Tube light, CFL and LED	
	Suggested Activities	
Activity	Identify variety of electrical switches and note down their applications/utility.	
No. 1	Reference: Weblink/Youtube/Book	
Activity	Identify the hazards involved in handling electrical circuits and instruments, make a list of safety precautions as well as first aid for electrical shocks.	
No. 2	Reference : Weblink/Youtube/Book	
	Unit - 2	
Chapter No. 4.	Galvanometers: General principle and performance equations of D'Arsonval Galvanometers, Vibration Galvanometer and Ballistic Galvanometer.	03
Chapter No. 5.	Potentiometers: DC Potentiometer, Crompton potentiometer, construction, standardization, application. AC Potentiometer, Drysdale polar potentiometer; standardization, application.	03
Chapter No. 6.	DC/AC Bridges: General equations for bridge balance, measurement of self inductance by Maxwell's bridge (with variable inductance & variable capacitance), Hay's bridge, Owen's bridge, measurement of capacitance by Schearing bridge, errors, Wagner's earthing device, Kelvin's double bridge.	07
Topics for self study (If any)	Importance of grounding and <u>Earthing</u> , Methods for <u>Earthing</u> ,	

	Suggested Activities	
Activity	Make a study of importance of grounding in electrical circuits.	
No. 3	Reference : Weblink/Youtube/Book	
Activity	Prepare a detailed account of various methods of earthing and their utility/applications	
No. 4	Reference : Weblink/Youtube/Book	
	Unit - 3	
Chapter No.7	Transducer: Strain Gauges, Thermistors, Thermocouples, Linear Variable Differential Transformer (LVDT), Capacitive Transducers, Peizo-Electric transducers, Optical Transducer, Hall Effect Transducer	06
Chapter No. 8	CRO: Block diagram, Sweep generation, vertical amplifiers, use of CRO in measurement of frequency, phase, Amplitude and rise time of a pulse. Digital Multi-meter: Block diagram, principle of operation	03
Chapter No. 9	Basics of lead acid batteries, Lithium Ion Battery , Battery storage capacity, Coulomb efficiency, Numerical of high and low charging rates, Battery sizing.	04
Topics for self study (If any)	Fuses, MCB, ELCB and Relays, Filament lamp, Tube light, CFL and LED	
	Suggested Activities	
Activity	Prepare a document on evolution of incandescent bulbs to the present day LED lights	
No. 5	Reference : Weblink/Youtube/Book	
Activity	Make a comparative study of Fuses, MCB, ELCB and Relays highlighting their use and applications	
No.6	Reference : Weblink/Youtube/Book	

Text Books

AK.Sawhney, A Course in Elec. & Electronics Measurements & Instrumentation, Dhanpat rai & Co. 1978

A.D. Helfrick & W.D. Cooper, Modern Electronic Instrumentation and Measurement Techniques PHI,2016

References Books

1. D C Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications, 2019	
2. David G Alciatore and Michel B Histand, Introduction to Mechatronics and Measurement	
Systems, 3rd, Tata McGraw Hill Education Private Limited, New Delhi., 2005	
3. Vincent Del Toro, Electrical Engineering Fundamentals Prentice Hall India2009	

Sl No	Experiment
1	Introduction to Lab Equipment
2	Voltmeter Design
3	Ammeter Design
4	Ohmmeter Design
5	Multimeter Design
6	Measurement of Resistance using Wheatstone Bridge
7	Measurement of Capacitance using Schering Bridge
8	Measurement of Inductance using Maxwell Bridge
9	Measurement of Light Intensity
10	Measurement of Temperature
	Reference Book for Laboratory Experiments
	AK.Sawhney ACourse inElec.&Electronics Measurements&Instrumentation:
	Helfrick& Cooper, Modern Electronic Instrumentation and Measurement Techniques:

List of Experiments to be performed in the Laboratory

PHYSICS FOR ALL

Time: 2 hrs./week + 01 Hr tutorial

Unit I	Energy and Power	(13 Hours)
	Explosions and energy; Energy, heat and its units; Energy table and	
	discussions; Discussion of cost of energy; Measuring energy; Power;	
	Different power sources; Kinetic energy.	
Unit II	Gravity, Force and Space	(13 Hours)
	The force of Gravity; Newton's third law; Weightlessness; Low earth orbit;	
	Geosynchronous satellites; Spy satellites; Medium Earth Orbit satellite;	
	Circular Acceleration; momentum; Rockets; Airplanes, helicopters and fans;	
	Hot air and helium balloons; angular momentum and torque.	
Unit III	Nuclei and radioactivity	(13 Hours)
	Radioactivity; Elements and isotopes; Radiation and rays; Seeing radiation;	
	The REM – The radiation poisoning; Radiation and cancer; The linear	
	hypothesis; Different types of radiation; The half-life rule; Smoke detectors;	
	measuring age from radioactivity; Environmental radioactivity; Glow of	
	radioactivity; Nuclear fusion.	
Unit IV	Climate change	(13 Hours)
	Global warming; IPCC; A brief history of climate; carbon dioxide; The	
	greenhouse effect; Enhancement of Greenhouse effect; Hurricane and	
	tornadoes; Antarctica; Fluctuations; Paleoclimate; Global warming vs Human	
	caused global warming; Can we stop global warming?, Fossil Fuel Resources;	
	Energy security; Energy efficiency and conservation; Bio-fuels; Nuclear, Wind	
	and Solar power.	
	References	
	This course is extracted from the book titled "Physics and Technology for	
	Future Presidents: An Introduction to the Essential Physics Every World	
	Leader Needs to Know" by Richard A Muller, WW Norton and Company,	
	2007. (Unit-1 to 4 are from chapters 1, 3, 4 and 10, respectively).	

SPACE MISSIONS

Time: 2 hrs./week + 01 Hr tutorial

Unit 1:	Introduction to Space Missions :	13 Hours
	Rockets, types and their applications, Different types of orbits, Artificial satellites – basic idea and their applications, Introduction to Space Missions, Beginning of Space Missions - World and India, Applications of Space Research, Space crafts, Launching Vehicles.	
Unit 2:	National Aeronautics and Space Administration (NASA)	13 Hours
	About NASA and its Goals, History of Creation. Foundational human spaceflight: X-15 program (1954–1968), Project Mercury (1958–1963), Project Gemini (1961–1966), Project Apollo (1960–1972), Skylab (1965–1979), Apollo-Soyuz (1972–1975).	
	Modern human spaceflight programs: Space Shuttle program (1972–2011), International Space Station (1993–present), Constellation program (2005–2010), Commercial Crew Program (2011–present), Journey to Mars (2010–2017), Artemis program (2017–present).	
Unit 3:	Indian Space Research Organization (ISRO)	13 Hours
	About ISRO and its Goals, History of Creation. General Satellite Programmes: The IRS series, The INSAT series. Gagan Satellite Navigation System, Navigation with Indian Constellation (NavIC), Other satellites.	
	Launch vehicles: Satellite Launch Vehicle (SLV), Augmented Satellite Launch Vehicle (ASLV), Polar Satellite Launch Vehicle (PSLV), Geosynchronous Satellite Launch Vehicle (GSLV). Experimental Satellites: Details and applications (Any Five) Earth Observation Satellites: Details and applications (Any Five) Communication satellites: Details and applications (Any Five)	
	Self Study:	
	Major Space Centres in the World (at least 10) – brief idea about their location, establishment, capabilities and achievements. People behind space programs – at least 2 from India. Successful Missions (Any Five).	
	Activities*:	
	 Design of working model of Rocket launching. Preparation of report and presentation on application of satellites in agriculture, communication, weather forecasting, exploration of natural resources and Global positioning system (GPS). 	
	* Faculty may suggest any other relevant activity as well. Preparation of report and presentation onApollo 11: A Success story	

Acti	vities:
•	Preparation of report and presentation on the recent space missions of NASA.
•	Preparation of report on any one proposed space programme of NASA.
*	Faculty may suggest any other relevant activity as well.
	drayaan 1: Details and applications. Mars Orbiter Mission: Details oplications.
Acti	vities:
•	Preparation of report and presentation on the recent space missions of ISRO.
•	Preparation of report and presentation on any one proposed space programme of ISRO.
•	Scientists from Karnataka to Indian Space Program and use of
	space technology in the local district. * Faculty may suggest any other relevant activity as well.

Activity Based Pedagogy:

(Design, Activity and Assessment)

Conducting activity based teaching-leaning experience for students empower students with several graduate attributes by addressing several Outcomes at different levels of the Cognitive Blooms Taxanomy of Learning: like Clarity of Concept, ability to apply knowledge, evaluate and analyse the results, while they are also learn through the Affective and Psycho-motor domains of Learning through self-learning, group dynamics and team work, communication and presentation skills, ethics, life-long learning, etc. These experiments must be ones that do not involve sophisticated instrumentation and should be able to be performed outside laboratories.

Example 1: Elastic Properties of Solids:

The most important concept of studying elastic properties of solids is the Hooke's Law, which defines the stress-strain relationship.

Class 1: Defining problems, forming groups and giving instructions:

- The students should be made into forced groups of 6 to 8 members, depending on the class strength, consisting of diverse kinds of students in cognition, cultural, sex, behaviour, etc.
- Different materials of varying elastic properties should be given to each group, and should be asked to plot a graph of stress-strain of these materials in 8-10 days.
- Give clear instructions and clarify doubts, but not giving the procedure for the experiments. Students should discuss among themselves and consult books and internet to identify the procedure to obtain the Stress-strain graph. They should use only house-hold items or other commonly available tools to perform all the experiments.

Class 2: Presentation and discussion by students (max 8-10 mins each)

- Each group will be asked to make a presentation of 2 power point slides, where the first one explains the process they went through to arrive at the results and the second one shows their measured graph and an ideal text book plots. This slide should also contain two or three explanations of why both the plots differ.
- The student who will make the presentation on behalf of the group will be randomly selected just before the presentations. This will ensure that all group members will be mutually train each other for the presentation.
- The teacher should give equal marks to each member of a group depending on the methods adopted and clarity of concepts and results obtained and ability to analyse.

The following Program Outcomes will be attained by the students in such an activity based learning:

P.O. 1 : Discipline Knowledge: Knowledge of science and ability to apply to relevant areas.

P.O. 3 : Modern tool usage: Use a modern scientific, engineering and IT tool or technique for solving problems in the areas of their discipline.

P.O. 5 : Individual and teamwork: Work effectively as an individual as a team member in a multidisciplinary team.

P.O. 6 : Communication: Communicate effectively with the stake holders, and give and receive clear instructions.

Example 2: Periodic and Non-Periodic Motions

Most important aspect of understanding this topic is to distinguish them with the amplitude versus distance and amplitude versus time plots.

Class 1: Defining problems and giving instructions

- Each student will be asked to list as many observations as possible, under the two types of motion as they observe in the external world (home, market, college, etc) in 8-10 days.
- The student will be asked to identify any one motion in each of the lists and plot graphs of amplitude versus distance and amplitude versus time for each of them in the 8-10 days.

Class 2: Peer evaluation by students and defending self

- Each student is asked to submit the lists of periodic and non-periodic motions observed in everyday life.
- Each student is also asked to submit the amplitude versus distance and amplitude versus timeof one periodic motion and one non-periodic motion of his/her choice among his/her list.
- The submissions are randomly distributed among other students. Teacher now discusses thetwo types of motions in the lists of students and shows how the graphs will ideally look like.
- Now students are asked to evaluate and mark the submissions of other students they have withthem and then the marked papers are returned to the respective students.
- Each student should be given an opportunity to question the marks he has got and each studentwho has given the marks should be able to defend his choice or marks.
- While observing the lists, marks obtained and the plots made, the teacher can assign marks toeach student.

The following Program Outcomes will be attained by the students in such an activity based learning:

P.O. 1. Discipline Knowledge: Knowledge of science and ability to apply to relevant areas.P.O. 4. Ethics: Apply the professional ethics and norms in respective discipline.P.O. 6. Communication: Communicate effectively with the stake holders, and give and receive clear instructions.

Telephone No. 2419677/2419361 Fax: 0821-2419363/2419301

e-mail : registrar@uni-mysore.ac.in www.uni-mysore.ac.in

UNIVERSITY OF MYSORE

VishwavidyanilayaKaryasoudha Crawford Hall, Mysuru- 570 005 Dated: 01.09,2023

No.AC2(S)/151/2020-21

Notification

Sub:- Syllabus and Scheme of Examinations of Physics (UG) (V & VI Semester) with effect from the Academic year 2023-24.

Ref:- 1. This office letter No: AC6/303/2022-23 dated: 28-07-2023.

2. Decision of BOS in Physics (UG) meeting held on 07-08-2023.

The Board of Studies in Physics (UG) which met on 07-08-2023 has resolved to recommended and approved the syllabus and scheme of Examinations of Physics programme (V & VI Semester) with effect from the Academic year 2023-24.

Pending approval of the Faculty of Science & Technology and Academic Council meetings the above said syllabus and scheme of examinations are hereby notified.

The syllabus and scheme of Examinations contents may be downloaded from the University website i.e., <u>www.uni-mysore.ac.in</u>.

To:-

- 1. All the Principal of affiliated Colleges of University of Mysore, Mysore.
- 2. The Registrar (Evaluation), University of Mysore, Mysuru.
- 3. The Chairman, BOS/DOS, in Physics, Manasagangothri, Mysore.
- 4. The Director, Distance Education Programme, Moulya Bhavan, Manasagangotri, Mysuru.
- 5. The Director, PMEB, Manasagangothri, Mysore.
- 6. Director, College Development Council, Manasagangothri, Mysore.
- 7. The Deputy Registrar/Assistant Registrar/Superintendent, Administrative Branch and Examination Branch, University of Mysore, Mysuru.
- The PA to Vice-Chancellor/ Registrar/ Registrar (Evaluation), University of Mysore, Mysuru.
- 9. Office Copy.

Curriculum of B.Sc in Physics(NEP)

Vth & VIth Semesters

University of Mysore Mysuru

PROPOSED COURSE FRAME WORK IN PHYSICS AS PER HIGHER EDUCATION COUNCIL GUIDELINES (for Two Majors)

Sem. No.	Course Category	Course Code	Course Title	Credits	Instructional Hours per week		Duration	Marks		
				Assigned	Theory	Practical	of Exam (Hrs.)	IA	Exam	Total
v	DSC PHYSICS MAJOR	FSE410	Classical Mechanics -I and Quantum Mechanics-I	04	04		2:30	40	60	100
		FSE411P	Classical Mechanics -I and Quantum Mechanics-I Practical	02	-	04	03	25	25	50
		FSE412	Elements of Atomic, Molecular and Laser Physics	04	04		2:30	40	60	100
		FSE413P	Elements of Atomic, Molecular and Laser Physics Practical	02	-	04	03	25	25	50
	DSC SECOND MAJOR	Х9-Т		04	04		02	40	60	100
		X10-P		02	-	04	03	25	25	50
		X11-T		04	04		02	40	60	100
		X12-P		02	-	04	03	25	25	50
	SEC		Employability skills or Cyber Security	03	02	02		25	25	50
			Total	27				285	365	650
VI	DSC PHYSICS MAJOR	FSF410	Elements of Condensed Matter & Nuclear Physics	04	04		2:30	40	60	100
		FSF411P	Elements of Condensed Matter & Nuclear Physics Practical	02	-	04	03	25	25	50
		FSF412	Electronic Instrumentation & Sensors	04	04		2:30	40	60	100
		FSF413P	Electronic Instrumentation & Sensors Practical	02	-	04	03	25	25	50
	DSC SECOND MAJOR	Х13-Т		04	04		02	40	60	100
		X14-P		02	-	04	03	25	25	50
		X15-T		04	04		02	40	60	100
		X16-P		02	-	04	03	25	25	50
	Internship	INTERNSHIP	Internship	02		04		50		50
			Total	26				310	340	650

B.Sc in Physics V Semester Curriculum of Paper-5

Program Name	BSc in Physics		Semester	V	
Course Title	Classica	I Mechanics	and Quantum Mechanics- I (Theory)		
Course Code	FSE410		No. of Credits	04	
Contact Hours	Hours 60 Hours		Duration ofSEA/Exam	02:30 Hours	
Formative AssessmentMarks		40	Summative Assessment Marks	60	

Course Pre-requisite(s):

Course Outcomes (COs): After the successful completion of the course, the student will be able to

- Identify the failure of classical physics at the microscopic level.
- Find the relationship between the normalization of a wave function and the ability to correctly calculate expectation values or probability densities.
- Explain the minimum uncertainty of measuring both observables on any quantum state.
- Describe the time-dependent and time-independent Schrödinger equation for simple potentials like for instance one-dimensional potential well and Harmonic oscillator.
- Apply Hermitian operators, their eigenvalues and eigenvectors to find various commutation and uncertainty relations.

Contents	60 Hrs
 Introduction to Newtonian Mechanics: Frames of references, Newton's laws of motion, inertial and non-inertial frames. Mechanics of a particle, Conservation of linear momentum, Angular momentum and torque, conservation of angular momentum, work done by a force, conservative force and conservative energy. Lagrangian formulation: Constraints, Holonomic constraints, non-holonomic constraints, 	15
Scleronomic and Rheonomic constraints. Generalized coordinates, degrees of freedom, Principle of virtual work, D'Alembert's principle, Lagrange equations. Newton's equation of motion from Lagrange equations, simple pendulum, Atwood's machine and linear harmonic oscillator. 12 Hours Activities: 03 Hours	
Variational principle: Hamilton's principle, Deduction of Hamilton's principle, Lagrange's equation of motion from Hamilton's principle, Hamilton's principle for non-holonomic systems.Hamiltonian Mechanics: The Hamiltonian of a system, Hamilton's equations of motion, Hamilton's equations from variational principle, Integrals of Hamilton's equations, energy integrals, Canonical Transformations, Poison Brackets, fundamental properties and equations of motion in Poison Brackets.12Hours 03 Hours	15

Introduction to Quantum MechanicsBrief discussion on failure of classical physics to explain black body radiation, Photoelectriceffect, Compton effect, stability of atoms and spectra of atoms.Compton scattering: Expression for Compton shift (With derivation).Matter waves: de Broglie hypothesis of matter waves, Electron microscope, Wave descriptionof particles by wave packets, Group and Phase velocities and relation between them,Experimental evidence for matter waves: Davisson- Germer experiment, G.P Thomson'sexperiment and its significance.Heisenberg uncertainty principle: Elementary proof of Heisenberg's relation betweenmomentum and position, energy and time, angular momentum and angular position,illustration of uncertainty principle by Gamma ray microscope thought experiment.Consequences of the uncertainty relations: Diffraction of electrons at a single slit, why electroncannot exist in nucleus?Two-slit experiment with photons and electrons. Linear superposition principle as aconsequence.12 Hours	15
Activities: 03 Hours	
Foundation of Quantum MechanicsProbabilistic interpretation of the wave function - normalization and orthogonality of wavefunctions, Admissibility conditions on a wave function, Schrödinger equation: equation ofmotion of matter waves - Schrodinger wave equation for a free particle in one and three-dimension, time-dependent and time-independent wave equations, Probability current density,equation of continuity and its physical significance, Postulates of Quantum mechanics: Statesasnormalizedwavefunctions.DynamicalvariablesaslinearHermitian operators (position, momentum, angular momentum, and energy as examples).Expectation values of operators and their time evolution. Ehrenfest theorem (no derivation),Commutator brackets- Simultaneous Eigen functions, Commutator bracket using position,momentum and angular momentum operators.Particle in a one-dimensional infinite potential well (derivation), degeneracy in three-dimensional case, particle in a finite potential well (qualitative), Transmission across a potentialbarrier, the tunnel effect (qualitative), scanning tunnelling microscope, One-dimensional simpleharmonic oscillator (qualitative) - concept of zero - point energy.12 HoursActivities:03 Hours	15

Pedagogy: Lecture/ PPT/ Videos/ Animations/ Role Plays/ Think-Pair-Share/ Predict-Observe-Explain/ Demonstration/ Concept mapping/ Case Studies examples/ Tutorial/ Activity/ Flipped Classroom/ Jigsaw/ Field based Learning/ Project Based Learning/ Mini Projects/ Hobby Projects/ Forum Theatre/ Dance/Problem Based Learning/ Game Based Learning/ Group Discussion/ Collaborative Learning/ ExperientialLearning / Self Directed Learning etc.

Marks
10 Marks
4

	References
1	Classical Mechanics, H.Goldstein, C.P. Poole, J.L. Safko, 3rd Edn. 2002, Pearson Education.
2	Classical Mechanics: An introduction, Dieter Strauch, 2009, Springer
3	Classical Mechanics, G. Aruldhas, 2008, Prentice-Hall of India Private limited, New Delhi.
4	Classical Mechanics, Takwale and Puranik-1989, Tata Mcgraw Hill, new Delhi
5	Concepts of Modern Physics, Arthur Beiser, McGraw-Hill, 2009.
6	Physics for Scientists and Engineers with Modern Physics, Serway and Jewett, 9th edition, Cengage Learning, 2014.
7	Quantum Physics, Berkeley Physics Course Vol. 4. E.H. Wichman, Tata McGraw-Hill Co., 2008.
8	Six Ideas that Shaped Physics: Particle Behave like Waves, Thomas A. Moore, McGraw Hill, 2003.
9	P M Mathews and K Venkatesan, A Textbook of Quantum Mechanics, Tata McGraw Hill publication, ISBN: 9780070146174.
10	Ajoy Ghatak, S. Lokanathan, QuantumMechanics: Theory and Applications, SpringerPublication, ISBN 978-1-4020-2130-5.
11	Modern Physics; R.Murugeshan & K.Sivaprasath; S. Chand Publishing.
12	G Aruldhas, Quantum Mechanics, Phi Learning Private Ltd., ISBN: 97881203363.
13	Gupta, Kumar & Sharma, Quantum Mechanics, Jai Prakash Nath Publications.
14	Physics for Degree Students B.Sc., Third Year, C.L.Arora and P.S.Hemne, 1st edition, S.Chand & Company Pvt. Ltd., 2014.

(al Mechanics and ım Mechanics- I cal)	Practical Credits	02
Course Code	Course Code FSE411P		Contact Hours	04 Hours
Formative Assessment		25 Marks	Summative Assessment	25 Marks

Practical Content

Lab experiments: (at least 4 experiments from 1-8 and 4 experiments from 9-18)

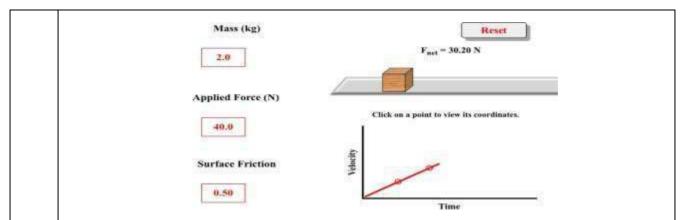
- 1) To determine 'g', the acceleration due to gravity, at a given place, from the $L T^2$ graph, for a simple pendulum.
- 2) Studying the effect of mass of the bob on the time period of the simple pendulum.

[Hint: With the same experimental set-up, take a few bobs of different materials (different masses) but of same size. Keep the length of the pendulum same for each case. Starting from a small angular displacement of about 10° find out, in each case, the time period of the pendulum, using bobs of different masses. Does the time period depend on the mass of the pendulum bob? If yes, then see the order in which the change occurs. If not, then do you see an additional reason to use the pendulum as a time measuring device.

3) Studying the effect of amplitude of oscillation on the time period of the simple pendulum.

[Hint: With the same experimental set-up, keep the mass of the bob and length of the pendulum fixed. For measuring the angular amplitude, make a large protractor on the cardboard and have a scale marked on an arc from 0° to 90° in units of 5°. Fix it on the edge of a table by two drawing pins such that its 0°-line coincides with the suspension thread of the pendulum at rest. Start the pendulum oscillating with a very large angular amplitude (say 70°) and find the time period T of the pendulum. Change the amplitude of oscillation of the bob in small steps of 5° or 10° and determine the time period in each case till the amplitude becomes small (say 5°). Draw a graph between angular amplitude and T. How does the time period of the pendulum change with the amplitude of oscillation? How much does the value of T for A = 10° differ from that for A= 50° from the graph you have drawn? Find at what amplitude of oscillation, the time period begins to vary? Determine the limit for the pendulum when it ceases to be a simple pendulum.]

- 4) Determine the acceleration of gravity is to use an Atwood's machine/Fly Wheel.
- 5) Study the conservation of energy and momentum using projectile motion.
- 6) Verification of the Principle of Conservation of Linear Momentum
- 7) A code in Python-Scilab to plot and analyze the trajectory of projectile motion
- 8) Determination of acceleration due to gravity by Stoke's method
- 9) Determination of Planck constant and work function of the material of the cathode using Photoelectric cell.
- 10) To study the spectral characteristics of a photo-voltaic cell (Solar cell).
- 11) Determination of electron charge 'e' by Millikan's Oil drop experiment.
- 12) To study the characteristics of solar cell.
- 13) To find the value of e/m for an electron by Thomson's method using bar magnets.
- 14) To determine the value of e/m for an electron by magnetron method.
- 15) To study the tunnelling in Tunnel Diode using I-V characteristics.
- **16)** Determination of quantum efficiency of Photodiode.
- 17) A code in Python-Scilab to find the first seven eigen states and eigen functions of Linear Harmonic Oscillator by solving the Schrödinger equation.
- **18)** A code in Python-Scilab to plot and analyse the wavefunctions for particle in an infinite potential well.


Pedagogy: Demonstration/Experiential Learning / Self Directed Learning etc.

Formative Assessment for Practical		
Marks		
25 Marks		

Formative Assessment as per UNIVERSITY guidelines are compulsory

	References
1	B.Sc Practical Physics by C.L Arora.
2	B.Sc Practical Physics by Harnam Singh and P.S Hemne.
3	Practical Physics by G.S Squires.
4	Scilab Manual for CC-XI: Quantum Mechanics & Applications (32221501) by Dr Neetu Agrawal, Daulat Ram College of Delhi.
5	Scilab Textbook Companion for Quantum Mechanics by M. C. Jain.
6	Computational Quantum Mechanics using Scilab, BIT Mesra.
7	Advanced Practical Physics for Students by Worsnop B L and Flint H T.

	Activities
1	Atwood's Machine Everyone is fascinated by pulleys. In this Interactive, learners will attach two objects together by a string and stretch the string over a pulley. Both an Atwood's machine and a modified Atwood's machine can be created and studies. Change the amount of mass on either object, introduce friction forces, and measure distance and time in order to calculate the acceleration.
	Newton's Laws of Motion
	Force

When forces are unbalanced, objects accelerate. But what factors affect the amount of acceleration? This Interactive allows learners to investigate a variety of factors that affect the acceleration of a box pushed across a surface, The amount of applied force, the mass, and the friction can be altered. A plot of velocity as a function of time can be used to determine the acceleration.

In the <u>Balloon Car Lesson Plan</u>, students build and explore balloon-powered cars. This lesson focuses mostly on energy, but it also demonstrates Newton's laws of motion. Guidance is provided for talking specifically about the third law of motion. *Question*: how does the air escaping the balloon relate to Newton's third law of motion? Does the car continue to coast after the balloon is deflated? Why or why not?

Most of the activities and lessons below *focus* on one or two of the laws of motion. The <u>Build</u> <u>a Balloon Car</u> activity specifically **talks about all three of Newton's laws of motion** students can observe when building and experimenting with a simple balloonpowered car. This is an accessible hands-on activity that uses recycled materials and balloons for a fun combined engineering design project and physics experiment. The activity can be used with a wide range of grade levels to introduce and demonstrate the laws of motion. See the "Digging Deeper" section for a straightforward discussion of how each law of motion can be identified in the balloon car activity. (For a related lesson plan, see <u>Balloon Car Lesson</u> <u>Plan</u>, which is NGSS-aligned for middle school and focuses on the third law of motion.)

In the <u>Push Harder — Newton's Second Law</u>, students build their own cars using craft materials and get hands-on exploring Newton's second law of motion and the equation "force equals mass times acceleration" (F=ma). Options for gathering real-time data include using a mobile phone and a sensor app or using a meter stick and a stopwatch. *Questions*: What is the relationship between force, mass, and acceleration? As force increases, what happens to acceleration?

	In the <u>Skydive Into Forces</u> , students make parachutes and then investigate how they work to slow down a falling object. As students investigate the forces that are involved, educators can introduce Newton's second law of motion and how different forces change the resulting speed of a falling object. <i>Questions</i> : What forces help slow down the speed of a falling object? How does a parachute help slow the fall?
2	Both standard cameras (DSLRs, phone cameras) and our scientific cameras work on the principle of photoelectric effect to produce an image from light, involving the use of photodetectors and sensor pixels. Prepare a report on the working of digital camera.
3	Demonstration of Heisenberg uncertainty principle in the context of diffraction at a single slit:
	The uncertainty in the momentum Δp_x correspond to the angular spread of principal maxima θ .
	Then, $\Delta p_x = \sin \theta \cdot p$ where <i>p</i> is the momentum of the incident photon.
	Conduct the diffraction at a slit experiment virtually using the following link <u>https://www.walter-fendt.de/html5/phen/singleslit_en.htm</u>
	1. Measure the angular spread (θ) for different slit widths (Δx) for given wavelength of the incident photon. 2. Determine the momentum of the incident photon using $p = \frac{h}{\overline{\lambda}}$
	3. Create a line of best fit through the points in the plot $\frac{1}{\Delta p_x}$ against Δx and find its slope.
	How this exercise is related to Heisenberg Uncertainty principle. Make a report of the observations.
4	 Virtual lab to demonstrate Photoelectric effect using Value@Amritha: Conduct the virtual experiment using the following link <u>https://vlab.amrita.edu/?sub=1&brch=195∼=840&cnt=1</u> Determine the minimum frequency required to have Photoelectric effect for an EM radiation,

	when incident on a zinc metal surface.
	2. Determine the target material if the threshold frequency of EM radiation is 5.5×10^{15} Hz in a
	particular photoelectric experimental set up.
	3. Determine the maximum kinetic energy of photo-electrons emitted from a Zinc metal surface,
	if the incident frequency is $3x10^{15}$ Hz.
	4. What should be the stopping potential for photoelectrons if the target Material used is
	Platinum and incident frequency is 2x10 ¹⁵ Hz? Make a report of the calculations.
5	Visualization of wave packets using Physlet@Quantum Physics:
	The concept of group velocity and phase velocity of a wave packet can be studied using this
	link <u>https://www.compadre.org/PQP/quantum-need/section5_9.cfm</u>
	Students can take up the exercises using the link which is as follows
	https://www.compadre.org/PQP/quantum-need/prob5_11.cfm
	Six different classical wave packets are shown in the animations. Which of the wave packets
	have a phase velocity that is: greater than / less than / equal to the group velocity? Make a
	report of the observations.
6	Superposition of eigen states in an infinite one - dimensional potential well using QuVis
	(Quantum Mechanics Visualization Project):
	Construct different possible states by considering the first three eigen states and study the
	variation of probability density with position. Take the challenges after understanding the
	simulation and submit the report. The link is as follows
	https://www.standrews.ac.uk/physics/quvis/simulations_html5/sims/SuperpositionState
	s/SuperpositionStates.html
7	Determination of expectation values of position, momentum for a particle in a an infinite one
	- dimensional potential well using Physlet@Quantum Physics:
	The link to the visualization tool for the calculation is as follows
	https://www.compadre.org/PQP/quantum-theory/prob10_3.cfm
	A particle is in a one-dimensional box of length $L = 1$. The states shown are normalized.
	The results of the integrals that give $\langle x \rangle$ and $\langle x^2 \rangle$ and $\langle p \rangle$ and $\langle p^2 \rangle$. You may vary <i>n</i>
	from 1 to 10.
	a) What do you notice about the values of $\langle x \rangle$ and $\langle x^2 \rangle$ as you vary <i>n</i> ?
	b) What do you think $\langle x^2 \rangle$ should become in the limit of $n \to \infty$? Why?
	c) What do you notice about the values of $\langle p \rangle$ and $\langle p^2 \rangle$ as you vary <i>n</i> ?
	Make a report of the calculations.
8	Determination of expectation values for a particle in a one-dimensional harmonic oscillator
	using Physlet@Quantum Physics:
	The link to the visualization tool for the calculation is as follows
	https://www.compadre.org/PQP/quantum-theory/prob12_2.cfm
	A particle is in a one-dimensional harmonic oscillator potential ($\hbar = 2m = 1$; $\omega = k = 2$).
	The states shown are normalized. Shown are ψ and the results of the integrals that give
	$$ and $$ and and $$. Vary <i>n</i> from 1 to 10.
	a) What do you notice about how $$ and $$ and and $$ change?
	b) Calculate $\Delta x . \Delta p$ for $n = 0$. What do you notice considering $\hbar = 1$?
	c) What is E_n ? How does this agree with or disagree with the standard case for the harmonic oscillator?
	d) How much average kinetic and potential energies are in an arbitrary
	energy state?
	Make a report of the calculations.
0	Calculate uncertainties of position and momentum for a particle in a box using
9	
	Physlet@Quantum Physics:
	The link to the visualization tool for the calculation is as follows
	<u>https://www.compadre.org/PQP/quantum-theory/prob6_3.cfm</u>
	A particle is in a one-dimensional box of length $L = 1$. The states shown are normalized. The results of the integrals that give $\langle x \rangle$ and $\langle x^2 \rangle$, and $\langle p \rangle$ and $\langle p^2 \rangle$. You may vary <i>n</i> from 1 to 10.
	or the integrals that give \sqrt{r} and \sqrt{r} , and \sqrt{p} and \sqrt{p} . Tou may vary <i>n</i> from 1 to 10.
	a. For $n = 1$, what are Δx and Δp ?
1	a. For $n = 1$, what are Δx and Δp ?

	b. For $n = 10$, what are Δx and Δp ?
10	Write expressions for the three wave functions using Physlet@Quantum Physics: The link to the visualization tool for the calculation is as follows <u>https://www.compadre.org/PQP/quantum-theory/prob8_1.cfm</u>
	These animations show the real (blue) and imaginary (pink) parts of three time-dependent energy eigenfunctions. Assume x is measured in cm and time is measured in seconds.
	 a. Write an expression for each of the three time-dependent energy eigenfunctions in the form: e^{i(kx-wt)}. b. What is the mass of the particle? c. What would the mass of the particle be if time was being shown in ms? Make a report of the calculations.
11	If you store a file on your computer today, you probably store it on a solid-state drive (SSD), Make a detailed report on the role of quantum tunnelling in these devices.

Curriculum of Paper-6

Program Name	BSc in Physics	Semester	V
Course Title	Elements of Atomic	e, Molecular & Laser Physics	s (Theory)
Course Code	FSE412	No. of Credits	04
Contact Hours	60 Hours	Duration of SEA/Exam	02 Hours
Formative Assess	ment Marks 40	Summative Assessment Marks	60

Course Pre-requisite(s): PUC Science Knowledge

Course Outcomes (COs): After the completion of the course, the student will be able to

- Describe atomic properties using basic atomic models.
- Interpret atomic spectra of elements using vector atom model.
- Interpret molecular spectra of compounds using basics of molecular physics.
- Explain laser systems and their applications in various fields.

Contents	60 Hours
Basic Atomic models	15
Thomson's atomic model; Rutherford atomic model - Model, Theory of alpha particle	
scattering, Rutherford scattering formula; Bohr atomic model - postulates, Derivation of	
expression for radius, total energy of electron; Origin of the spectral lines; Spectral series of	
hydrogen atom; Effect of nuclear motion on atomic spectra - derivation; Ritz combination	
principle; Correspondence principle; Critical potentials – critical potential, excitation potential	
and ionisation potential; Atomic excitation and its types, Franck-Hertz experiment;	
Sommerfeld's atomic model – model, Derivation of condition for allowed elliptical orbits.	
12 Hours	
Activities: 03 Hours	
1. Students to estimate radii of orbits and energies of electron in case of hydrogen atom	
in different orbits and plot the graph of radii / energy versus principal quantum	
number 'n'. Analyze the nature of the graph and draw the inferences.	
2. Students to search critical, excitation and ionisation potentials of different elements	
and plot the graph of critical /excitation / ionisation potentials versus atomic	
number/mass number/neutron number of element. Analyze the nature of the graph	
and draw the inferences.	
Vector atomic model and optical spectra	15
Vector atom model – model fundamentals, spatial quantisation, spinning electron; Quantum	
numbers associated with vector atomic model; Coupling schemes – L-S and j-j schemes; Pauli's	
exclusion principle; Magnetic dipole moment due to orbital motion of electron – derivation;	
Magnetic dipole moment due to spin motion of electron; Lande g-factor and its calculation for	
different states; Stern-Gerlach experiment – Experimental arrangement and Principle; Fine	
structure of spectral lines with examples; Spin-orbit coupling/Spin-Orbit Interaction -	
qualitative; Optical spectra – spectral terms, spectral notations, selection rules, intensity rules;	
Fine structure of the sodium D-line; Zeeman effect: Types, Experimental study and classical	
theory of normal Zeeman effect, Zeeman shift expression (no derivation), examples; Stark	

effect: Experimental study, Types and examples. 12	Hours	
Activities: 03	Hours	
 Students to couple a p-state and s-state electron via L-S and j-j coupling sche system with two electrons and construct vector diagrams for each resultant the coupling results and draw the inferences. 	emes for a	
 Students to estimate magnetic dipole moment due to orbital motion of eledifferent states ²P_{1/2}, ²P_{3/2}, ²P_{5/2}, ²P_{7/2}, ²P_{9/2} and ²P_{11/2} and plot the graph moment versus total orbital angular momentum "J'. Analyze the nature of and draw the inferences. 	n of dipole	
Molecular Physics	1	5
	ar spectra; Non-rigid harmonic cence and of Raman oplications 12 Hours 03 Hours the graph ture of the rotational d plot the	
Laser Physics	1	5
Ordinary light versus laser light; Characteristics of laser light; Interaction of radia matter - Induced absorption, spontaneous emission and stimulated emission with m rate equations; Einstein's A and B coefficients – Derivation of relation between coefficients and radiation energy density; Possibility of amplification of light; H inversion; Methods of pumping; Metastable states; Requisites of laser – energy sour medium and laser cavity; Difference between Three level and four level lasers with Types of lasers with examples; Construction and Working principle of Ruby Laser a Laser; Application of lasers (qualitative) in science & research, isotope scommunication, fusion, medicine, industry, war space.	ation with nention of Einstein's Population rce, active examples; and He-Ne separation, and 12 Hours 03 Hours ndoscopy, neters for entation of er weapon, or specific	

Pedagogy: Lecture/ PPT/ Videos/ Animations/ Role Plays/ Think-Pair-Share/ Predict-Observe-Explain/ Demonstration/ Concept mapping/ Case Studies examples/ Tutorial/ Activity/ Flipped Classroom/ Jigsaw/Field based Learning/ Project Based Learning/ Mini Projects/ Hobby Projects/ Forum Theatre/ Dance/ Problem Based Learning/ Game Based Learning/ Group Discussion/ Collaborative Learning/ ExperientialLearning / Self Directed Learning etc.

Formative Assessment for Theory			
Assessment Occasion/ type	Marks		
Total	40 Marks		

Formative Assessment as per UNIVERSITY guidelines are compulsory

	References
1	Modern Physics, R. Murugeshan, Kiruthiga Sivaprakash, Revised Edition, 2009, S. Chand & Company Ltd.
2	Atomic & Molecular spectra: Laser, Raj Kumar, Revised Edition, 2008, Kedar Nath Ram Nath Publishers, Meerut.
3	Atomic Physics, S.N. Ghoshal, Revised Edition, 2013, S. Chand & Company Ltd.
4	Concepts of Atomic Physics, S.P. Kuila, First Edition, 2018, New Central Book Agency (P) Ltd.
5	Concepts of Modern Physics, Arthur Beiser, Seventh Edition, 2015, Shobhit Mahajan, S. Rai Choudhury, 2002, McGraw-Hill.
6	Fundamentals of Molecular Spectroscopy, C.N. Banwell and E.M. McCash, Fourth Edition, 2008, Tata McGraw-Hill Publishers.
7	Elements of Spectroscopy – Atomic, Molecular and Laser Physics, Gupta, Kumar and Sharma, 2016, Pragati Publications.

Cour	Course Title Elements of Atomic, Molecular & Laser Physics (Practical)			Practical Credits	02	
Cours	Course Code FSE413P			Contact Hours	04 Hours	
Form	ative Ass	essment	25 Marks	Summative	Assessment	25 Marks
			Practical	l Content		
NOTE	E: Studen	ts have t	to perform at-least EIG	HT Experiments fr	om the list below	V
			LIST OF F	EXPERIMENTS		
1.	To deterr	nine Plar	nck's constant using Pho			
2.	To deterr	nine Plar	nck's constant using LED.			
3.	To deterr	nine wav	elength of spectral lines	s of mercury source u	using spectromete	er.
4.	To detern discharge		value of Rydberg's cons	stant using diffraction	on grating and hy	drogen
5.	To deterr	nine the	wavelength of H-alpha e	emission line of Hydr	ogen atom.	
6.	To deter aplane di		e structure constant usi) grating.	ing fine structure se	paration of sodiu	រm D-lines usinរ្
7.	To deterr	nine the	ionization potential of I	Mercury/Xenon.		
8.	To deterr	nine the	absorption lines in the r	otational spectrum of	of lodine vapour.	
9.	9. To determine the force constant and vibrational constant for the iodine molecule from itsabsorption spectrum.					
10.	To find the	ne value	of e/m for an electron by	Thomson's method	using bar magnet	s.
11.	To deterr	nine the	wavelength of laser using	ng diffraction by sing	gle slit/double slite	5.
12.	To deterr	nine wav	elength of He-Ne laser ι	using plane diffraction	on grating.	
13.	13. To determine angular spread of He-Ne laser using plane diffraction grating.					
14.	14. Study of Raman scattering by CCl ₄ using laser and spectrometer/CDS.					
15.	15. To determine the diameter of the given wire by LASER diffraction.					
16.	16. Analysis of Stellar Spectra.					
17. Analysis of Band Spectra.						

Formative Assessment for Practical			
Assessment Occasion/ type	Marks		
Total	25 Marks		
Formative Assessment as per UNIVERSITY guidelines are compulsory			

	References
1	Practical Physics, D.C. Tayal, First Millennium Edition, 2000, Himalaya Publishing House.
2	B.Sc. Practical Physics, C.L. Arora, Revised Edition, 2007, S. Chand & Comp.Ltd.
3	An Advanced Course in Practical Physics, D. Chatopadhyaya, P.C. Rakshith, B. Saha, Revised Edition, 2002, New Central Book Agency Pvt. Ltd.
4	Physics through experiments, B. Saraf, 2013, Vikas Publications.

B.Sc in Physics VI Semester Curriculum of Paper-7

Program Name	e BSc in Physics			Semester	VI
Course Title	Elements of Condensed Matter & Nuclear Physi			cs(Theory)	
Course Code	FSF410		No. of Credits		4
Contact Hours	60 H	ours	Duration of SEA/Exam		2:30 Hours
Formative Asse	essmentMarks	40	Sum	mative Assessment Marks	60

Course Pre-requisite(s): PU level Physics knowledge

Course Outcomes (COs): After the successful completion of the course, the student will be able to:

- Explain the basic properties of nucleus and get the idea of its inner information. •
- Understand the concepts of binding energy and binding energy per nucleon v/s mass number graph. •
- Describe the processes of alpha, beta and gamma decays based on well-established theories. •
- Explain the basic aspects of interaction of gamma radiation with matter by photoelectric effect, • Compton scattering and pair production.
- Explain the different nuclear radiation detectors such as ionization chamber, Geiger-Mueller counter • etc.
- Explain the basic concept of scintillation detectors, photo-multiplier tube and semiconductor • detectors.

Contents	60 Hours
Crystal systems and X-rays: Crystal structure: Space Lattice, Lattice translational vectors, Basis of crystal structure, Types of unit cells, primitive, non-primitive cells Seven crystal system, Coordination numbers, Miller Indices, Expression for inter planner spacing. X Rays : Production and properties of X rays, Coolidge tube, Continuous and characteristic X-ray spectra; Moseley's law. X-Ray diffraction , Scattering of X-rays, Bragg's law. Crystal	15
diffraction: Bragg's X-ray spectrometer- powder diffraction method, Intensity vs 2θ plot (qualitative).	
Free electron theory of metals: Classical free electron model (Drude-Lorentz model), expression for electrical and thermal conductivity, Weidman-Franz law, Failure of classical free electron theory; Quantum free electron theory, Fermi level and Fermi energy, Fermi-Dirac distribution function (expression for probability distribution $F(E)$, statement only); Fermi Dirac distribution at T=0 and $E < E_f$, at T≠ 0 and $E > E_f$, F(E) vs E plot at T = 0 and T≠ 0. Density of states for free electrons (statement only, no derivation). Qualitative discussion of lattice vibration and concept of Phonons. Specific heats of solids: Classical theory, Einstein's and Debye's theory of specific heats. Hall Effect in metals. 12 HOURS	
ACTIVITIES: 03 HOURS	
Magnetic Properties of Matter, Dielectrics and SuperconductivityMagnetic Properties of MatterReview of basic formulae: Magnetic intensity, magnetic induction, permeability, magneticsusceptibility, magnetization (M), Classification of Dia, Para, and ferro magnetic materials;	15
	Page 18

Langevin Classical Theory of dia – and Para magnetism. Curie's law, Ferromagnetism and Ferromagnetic Domains (qualitative). Discussion of B-H Curve. Hysteresis and Energy Loss, Hard and Soft magnetic materials Dielectrics : Static dielectric constant, polarizability (electronic, ionic and orientation), calculation of Lorentz field (derivation), Clausius-Mosotti equation (derivation), dielectric loss.	
Piezo electric effect, cause, examples and applications.	
Superconductivity: Definition, Experimental results – Zero resistivity and Critical temperature– The critical magnetic field – Meissner effect, Type I and type II superconductors.	
12 HoursACTIVITIES:03 Hours	
General Properties of Nuclei : Constituents of nucleus and their intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, main features of binding energy versus mass number curve, angular momentum, parity, magnetic moment, electric moments	15
Radioactivity decay: Radioactivity: definition of radioactivity, half-life, mean life, radioactivity	
equilibrium (a) Alpha decay: basics of α -decay processes, theory of α emission (brief), Gamow	
factor, Geiger-Nuttall law. (b) β -decay: energy kinematics for β -decay, positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays' emission & kinematics, internal conversion (Definition). 12 Hours	
ACTIVITIES: 03 Hours	
Interaction of Nuclear Radiation with matter : Gamma ray interaction through matter, photoelectric effect, Compton scattering, pair production, Energy loss due to ionization (quantitative description of Bethe Block formula), energy loss of electrons, introduction of Cerenkov radiation	15
Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility) qualitative only, Accelerators: Cyclotrons and Synchrotrons.12 Hours 03 Hours	
Suggested Activities:	
1) Students to construct seven crystal systems with bamboo sticks and rubber bands. Use foam ball as atoms and study the BCC and FCC systems.	
 2)Students to search the characteristic X ray wavelength of different atoms/elements and plot characteristic wavelength vs atomic number and analyse the result and draw the inference. 3)Magnetic field lines are invisible. Students to trace the magnetic field lines using bar magnet and needle compass. <u>https://nationalmaglab.org/magnet-academy/try-this-at-home/drawing-magnetic-field-lines/</u>, 	
4) Using vegetable oil and iron fillings students to make ferrofluids and see how it behaves in the presence of magnetic field. <u>https://nationalmaglab.org/magnet-academy/try-this-at-home/making-ferrofluids/</u>	
1) Study the decay scheme of selected alpha, beta & gamma radioactive sources with the help of standard nuclear data book.	
2) Calculate binding energy of some selected light, medium and heavy nuclei. Plot the graph of binding energy versus mass number A	
3) Study the decay scheme of standard alpha, beta and gamma sources using nuclear data book.	
 4) Make the list of alpha emitters from Uranium series and Thorium series. Search the kinetic energy of alpha particle emitted by these alpha emitters. Collect the required data such as half life or decay constant. Verify Geiger-Nuttal in each series. 5) Study the Z dependence of photoelectric effect cross section. 	
 6) Study the Z dependence of photoelectric effect closs section. 6) Study the Z dependence of common cross section for selected gamma energies and selected elements through theoretical calculation. 7) List the materials and their properties which are used for photocathode of PMT. 	

Pedagogy: Lecture/ PPT/ Videos/ Animations/ Role Plays/ Think-Pair-Share/ Predict-Observe-Explain/ Demonstration/ Concept mapping/ Case Studies examples/ Tutorial/ Activity/ Flipped Classroom/ Jigsaw/ Field based Learning/ Project Based Learning/ Mini Projects/ Hobby Projects/ Forum Theatre/ Dance/Problem Based Learning/ Game Based Learning/ Group Discussion/ Collaborative Learning/ ExperientialLearning / Self Directed Learning etc.

Formative Assessment for Theory		
Assessment Occasion/ type	Marks	
Total	40 Marks	

Formative Assessment as per UNIVERSITY guidelines are compulsory

References

- 1. Solid State Physics-R. K. Puri and V.K. Babber., S.Chand publications, 1st Edition(2004).
- 2. Fundamentals of Solid State Physics-B.S.Saxena, P.N. Saxena, Pragati prakashan Meerut (2017).
- 3. Introductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008).
- 4. Nuclear Physics, Irving Kaplan, Narosa Publishing House
- 1. Introduction to solid State Physics, Charles Kittel, VII edition, (1996)
- 5. Solid State Physics- A J Dekker, MacMillan India Ltd, (2000)
- 6. Essential of crystallography, M A Wahab, Narosa Publications (2009)
- 7. Solid State Physics-S O Pillai-New Age Int. Publishers (2001).
- 8. Concepts of nuclear physics by Bernard L. Cohen. (Tata McGraw Hill, 1998).
- 9. Introduction to the physics of nuclei & particles, R.A. Dunlap. (Thomson Asia, 2004).
- 10. Introduction to High Energy Physics, D.H. Perkins, Cambridge Univ. Press
- 11. Basic ideas and concepts in Nuclear Physics An Introductory Approach by K. Heyde (Institute of Physics (IOP) Publishing, 2004).
- 12. Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).
- 13. Physics and Engineering of Radiation Detection, Syed Naeem Ahmed (Academic Press, Elsevier, 2007).

Course TitleElements of Condensed Matter & Nuclear Physics (Practical)			Practical Credits	02	
Course Code				Contact Hours	04 Hours
Formative As	sessment	25 Marks	Summative A	Assessment	25 Marks
		Practi	cal Content		
(At	least 4 ex	periments from CMP a	nd 4 experiments fro	om NP are to be p	erformed)
		CONDENSED 2	MATTER PHYSICS	(CMP)	
		onductor: determination	•	icient.	
	-	iconductor (diode/transi			
		icient of resistance of a T	Thermistor.		
	ergy of Co	••			
•	-	ffraction spectra and cal	culation of lattice para	ameter.	
		lid by Electrical Method Dielectric Constant of pol	ar liquid/Solid		
		lipole moment of organic			
9. B-H Curv					
	-	particle size from XRD pa	ttern using Debve-Sch	errer formula.	
		usceptibility of paramagr			
12. Measure	ment of s	usceptibility of paramagn	netic solid (Gouy's Met	hod)	
13. Determi	nation of _l	particle size from XRD pa	ttern using Williamso	n Hall Plot.	
			EAR PHYSICS(NP)		
-		eristics of Geiger-Mùller ing voltage.	Tube. Determine the	threshold voltage	, plateau
-		luare law of gamma rays	-		
		ange of electrons in Alur	-		
 Study the absorption of beta particles in Aluminum foils using GM counter. Determine mass attenuation coefficient of Aluminum foils. 					
Study the absorption of beta particles in thin copper foils using G M counter and determine massattenuation coefficient.					
 Study the attenuation of gamma rays in lead foils using Cs-137 source and G M counter. Calcula mass attenuation coefficient of Lead for Gamma. 					
	ne the en num foils.	d point energy of Tl-204	I source by studying t	the absorption of	beta particle
8. Study the and G M		on of absorption of gam	ma rays in polymeric	materials using Cs-	137 source

 $\label{eq:pedagogy: Demonstration/Experiential Learning / Self Directed Learning etc.$

	Formative Assessment for Practical					
	Assessment Occasion/type	Marks				
	Total25 Marks					
Forma	Formative Assessment as per UNIVERSITY guidelines are compulsory					
	References					
1 IGNC	IGNOU : Practical Physics Manual					
2 Saraf	Saraf : Experiment in Physics, Vikas Publications					
3 S.P. S	S.P. Singh : Advanced Practical Physics					
4 Melis	Melissons : Experiments in Modern Physics					
5 Misra	Misra and Misra, Physics Lab. Manual, South Asian publishers, (2000)					
6 Gupta	Gupta and Kumar, Practical physics, Pragati prakashan, (1976)					

Curriculum of Paper-8

Program Name	BSc in Physics		Semester	VI	
Course Title	Electronic Instru			nentation & Sensors (Th	neory)
Course Code:	FSF412		No.	of Credits	04
Contact Hours	60 Hours		Dura	ation of SEA/Exam	2:30 Hours
Formative Asses	ssment Marks	40	Sum	mative Assessment Marks	60

Course Pre-requisite(s): PU level Physics Knowledge

Course Outcomes (COs): After the successful completion of the course, the student will be able to:

- Identify different types of tests and measuring instruments used in practice and understand their basic working principles.
- Get hands on training in wiring a circuit, soldering, making a measurement using an electronic circuit used in instrumentation.
- Have an understanding of the basic electronic components viz., resistors, capacitors, inductors, discrete and integrated circuits, colour codes, values and pin diagram, their practical use.
- Understanding of the measurement of voltage, current, resistance value, identification of the terminals of a transistor and ICs.
- Identify and understand the different types of transducers and sensors used in robust and hand-held instruments.
- Understand and give a mathematical treatment of the working of rectifiers, filter, data converters and different types of transducers.
- Connect the concepts learnt in the course to their practical use in daily life.
- Develop basic hands-on skills in the usage of oscilloscopes, multimeter, rectifiers, amplifiers, oscillators and high voltage probes, generators and digital meters.
- Servicing of simple faults of domestic appliances: Iron box, immersion heater, fan, hot plate, battery charger, emergency lamp and the like.

Contents	60Hours
Power supply AC power and its characteristics, Single phase and three phase, Need for DC power supply and its characteristics, line voltage and frequency, Rectifier bridge, Filters: Capacitor and inductor filers, L-section and π -section filters, ripple factor, electronic voltage regulators, stabilization factor, voltage regulation using ICs. Basic electrical measuring instruments Cathode ray oscilloscope- Block diagram, basic principle, electron beam, CRT features, signal display. Basic elements of digital storage oscilloscopes. Basic DC voltmeter for measuring potential difference, Extending Voltmeter range, AC voltmeter using rectifiers, Basic DC ammeter, requirement of a shunt, Extending of ammeter	15
ranges. Topics for self-study: Average value and RMS value of current, Ripple factor, Average AC input power and DC output power, efficiency of a DC power supply. Multirange voltmeter and ammeter. ACTIVITIES: Activities 03 Hours	

 Design and wire your own DC regulated power supply. Power output: 5 V, 10 V, ± 5 V. Components required: A step down transformer, semiconductor diodes (BY126/127), Inductor, Capacitor, Zener diode or 3-pin voltage regulator or IC. Measure the ripple factor and efficiency at each stage. Tabulate the result. 1. Extend the range of measurement of voltage of a voltmeter (analog or digital) using external component and circuitry. Design your own circuit and report. 	
 Measure the characteristics of the signal waveform using a CRO and function generator. Tabulate the frequency and time period. Learn the function of Trigger input in an CRO. Learn to use a Storage Oscilloscope for measuring the characteristics of a repetitive input 	
signal. Convince yourself how signal averaging using Storage CRO improves S/N ratio.	
Wave form generators and Filters Basic principle of standard AF signal generator: Fixed frequency and variable frequency, AF sine and square wave generator, basic Wein-bridge network and oscillator configuration, Triangular and saw tooth wave generators, circuitry and waveforms.	15
Passive and active filters. Fundamental theorem of filters, Proof of the theorem by considering a symmetrical T-network. Types of filters, Circuitry and Cut-off frequency and frequency response of Passive (RC) and Active (op-amp based) filters: Low pass, high pass and band pass. 12 Hours ACTIVITIES: 03 Hours Activities	
 Activities Measure the amplitude and frequency of the different waveforms and tabulate the results. Required instruments: A 10 MHz oscilloscope, Function generators (sine wave and square wave). Explore where signal filtering network is used in real life. Visit a nearby telephone exchange and discuss with the Engineers and technicians. Prepare a report. Explore op-amp which works from a single supply biasing voltage (+15V). Construct an 	
 inverting/non-inverting amplifier powered by a single supply voltage instead of dual or bipolar supply voltage. 4. Op-amp is a linear (analog) IC. Can it be used to function as logic gates? Explore, construct and implement AND, OR NAND and NOR gate functions using op-amps. Verify the truth table. Hint: LM3900 op-amp may be used. The status of the output may be checked by LED. 	
Data Conversion and display	15
Digital to Analog (D/A) and Analog to Digital (A/D) converters – A/D converter with pre- amplification and filtering. D/A converter - Variable resistor network, Ladder type (R-2R) D/A converter, Op-amp based D/A converter. Digital display systems and Indicators- Classification of displays, Light Emitting Diodes (LED) and Liquid Crystal Display (LCD) – Structure and working.	15
Data Transmission systems – Advantages and disadvantages of digital transmission over analog transmission, Pulse amplitude modulation (PAM), Pulse time modulation (PTM) and Pulse width modulation (PWM)- General principles. Principle of Phase Sensitive Detection (PSD).	
Topic for self-study: Lock-in amplifier and its application, phase locked loop.12 HoursACTIVITIES:03 HoursActivities	
1. Explore where modulation and demodulation technique is employed in real life. Visit a Radio broadcasting station. (Aakashavani or Private). Prepare a report on different AM and FM stations.	
2. Explore and find out the difference between a standard op-amp and an instrumentation op-amp. Compare the two and prepare a report.	
Transducers and sensors	15
Definition and types of transducers. Basic characteristics of an electrical transducer, factors governing the selection of a transducer, Resistive transducer-potentiometer, Strain gauge and types (general description), Resistance thermometer-platinum resistance thermometer.	-

Thermistor. Inductive Transducer-general principles, Linear Variable Differential Transducer (LDVT)- principle and construction, Capacitive Transducer, Piezo-electric transducer, Photoelectric transducer, Photovoltaic cell, photo diode and phototransistor principle and working. 12 Hours

ACTIVITIES:

Activities

03 Hours

- 1. Construct your own thermocouple for the measurement of temperature with copper and constantan wires. Use the thermocouple and a Digital multimeter (DMM). Record the emf (voltage induced) by maintaining one of the junctions at a constant temperature (say at 0°C, melting ice) and another junction at variable temperature bath. Tabulate the voltages induced and temperatures read out using standard chart (Chart can be downloaded from the internet).
- 2. Observe a solar water heater. Some solar water heaters are fitted with an anode rod (alloy of aluminium). Study why it is required. Describe the principle behind solar water heater.

Pedagogy: Lecture/ PPT/ Videos/ Animations/ Role Plays/ Think-Pair-Share/ Predict-Observe-Explain/ Demonstration/ Concept mapping/ Case Studies examples/ Tutorial/ Activity/ Flipped Classroom/ Jigsaw/ Field based Learning/ Project Based Learning/ Mini Projects/ Hobby Projects/ Forum Theatre/ Dance/ Problem Based Learning/ Game Based Learning/ Group Discussion/ Collaborative Learning/ Experiential Learning / Self Directed Learning etc.

Formative Assessment for Theory		
Assessment Occasion/ type	Marks	
Total	40 Marks	
Formative Assessment as ner UNIVERSITY quidelines are compulsory		

Formative Assessment as per UNIVERSITY guidelines are compulsory

References

- 1. Physics for Degree students (Third Year) C.L. Arora and P.S. Hemne, S, Chand and Co. Pvt. Ltd. 2014 (For Unit-1, Power supplies)
- 2. Electronic Instrumentation, 3rd Edition, H.S. Kalsi, McGraw Hill Education India Pvt. Ltd. 2011(For rest of the syllabus)
- 3. Instrumentation Devices and Systems (2nd Edition)– C.S. Rangan, G.R. Sarma, V.S.V. Mani, Tata McGraw Hill Education Pvt. Ltd. (Especially for circuitry and analysis of signal generators and filters)

Course Title	Course TitleElectronic Instrumentation & Sensors (Practical)Practical Credits02				02	
Course Code	Code FSF413P Contact Hours 04		04 Hours			
Formative Assessment			25 Marks			
	Practical Content					
	Lis	t of experiments (At least 8 a	experiment	s to be performed)		
 List of experiments (<i>At least 8 experiments to be performed</i>) Bridge rectifier with and without filter Phase measurement in LCR circuit using CRO Study of Zener diode as a voltage regulator. RC low pass and high pass filters. Calibration of a low range voltmeter using a potentiometer Calibration of an ammeter using a potentiometer Study of Wien bridge oscillator Study the frequency response of a first order op-amp low pass filter Study of LDR Characteristics. Study the characteristics of <i>pn</i>-junction of a solar cell and determine its efficiency. Study the illumination intensity of a solar cell using a standard photo detector (e.g., lux meter). Determine the coupling coefficient of a piezo-electric crystal. Study the amplitude modulation using a transistor. 						

Pedagogy: Lecture/ PPT/ Videos/ Animations/ Role Plays/ Think-Pair-Share/ Predict-Observe-Explain/ Demonstration/ Concept mapping/ Case Studies examples/ Tutorial/ Activity/ Flipped Classroom/ Jigsaw/ Field based Learning/ Project Based Learning/ Mini Projects/ Hobby Projects/ Forum Theatre/ Dance/ Problem Based Learning/ Game Based Learning/ Group Discussion/ Collaborative Learning/ Experiential Learning / Self Directed Learning etc.

Formative Assessment for Practical		
Assessment Occasion/ type	Marks	
Total	25 Marks	

References

- 1. Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. B.Sc. Practical Physics, C.L. Arora (Revised Edition), S. Chand and Co. Ltd. 2007
- 3. Practical Physics, D.C. Tayal, First Millennium Edition, Himalaya Publishing House, 2000

Employability and skill development

The whole syllabus is prepared with a focus on employability.

Skill development achieved: Fundamental understanding of the working of test and measuring instruments. Operating and using them for measurements. Servicing of laboratory equipment for simple cable faults, loose contacts and discontinuity.

Job opportunities: Lab Assistant/Scientific Assistant in hospitals, R and D institutions, educational institutions.

Continuous Formative Evaluation/ Internal Assessment:

Total marks for each course shall be based on continuous assessments and semester end examinations. The pattern of 40:60 (100 Marks) for IA and Semester End theory examinations respectively and 25: 25 (50 Marks) for IA and Semester End practical examinations respectively.

Total Marks for each Course (Theory) = 100 marks

Continuous assessment (C1) = 20 marks

Continuous assessment (C2) = 20 marks

Semester End Theory Examination (C3) = 60 marks

Total Marks for each Course (Practical) = 50 marks

Continuous assessment (C1) = 10 marks

Continuous assessment (C2) = 15 marks

Semester End Practical Examination (C3) = 25 marks

Evaluation process of IA marks shall be as follows:

a) The first component (C1) of assessment is for 20% marks. This shall be based on test, assignment, seminar, case study, field work, project work etc. This assessment and score process should be completed after completing 50% of syllabus of the course/s and within 45 working days of semester program

b) The second component (C2) of assessment is for 20% marks. This shall be based on test, assignment, seminar, case study, field work, internship / industrial practicum / project work etc. This assessment and score process should be based on completion of remaining 50% of syllabus of the courses of the semester.

c) During the 17th – 19th week of the semester, a semester end examination shall be conducted by the University for each Course. This forms the third and final component of assessment (C3) and the maximum marks for the final component will be 60%.

d) In case of a student who has failed to attend the C1 or C2 on a scheduled date, it shall be deemed that the student has dropped the test. However, in case of a student who could not take the test on scheduled date due to genuine reasons, such a candidate may appeal to the Program Coordinator / Principal. The Program Coordinator / Principal in consultation with the concerned teacher shall decide about the genuineness of the case and decide to conduct special test to such candidate on the date fixed by the concerned teacher but before commencement of the concerned semester end examinations.

e) For assignments, tests, case study analysis etc., of C1 and C2, the students should bring their own answer scripts (A4 size), graph sheets etc., required for such tests/assignments and these be stamped by the concerned department using their department seal at the time of conducting tests / assignment / work etc.

f) The outline for continuous assessment activities for Component-I (C1) and Component-II (C2) of a course shall be as under.

g)

Activities	C1	C2	Total Marks
Session Test	10 marks	10 marks	20
Seminars/Assignment/Activity	10 marks	10 marks	20
Total	20 marks	20 marks	40

• For practical course of full credits, Seminar shall not be compulsory. In its place, marks shall be awarded for Practical Record Maintenance. (The ratio is 25 (C1-10 + C2-15): C3-25)

• Conduct of Seminar, Case study / Assignment, etc. can be either in C1 or in C2 component at the convenience of the concerned teacher.

• The teachers concerned shall conduct test / seminar / case study, etc. The students should be informed about the modalities well in advance. The evaluated courses / assignments during component I (C1) and component II (C2) of assessment are immediately provided to the candidates after obtaining acknowledgement in the register by the concerned teachers(s) and maintained by the Chairman in the case of a University Post-Graduate Department and the Principal / Director in the case of affiliated institutions. Before commencement of the semester end examination, the evaluated test, assignment etc. of C1 and C2 shall be obtained back to maintain them till the announcement of the results of the examination of the concerned semester.

h) The marks of the internal assessment shall be published on the notice board of the department / college for information of the students.

i) The Internal assessment marks shall be communicated to the Registrar (Evaluation) at least 10 days before the commencement of the University examinations and the Registrar (E) shall have access to the records of such periodical assessments.

j) There shall be no minimum in respect of internal assessment marks.

k) Internal assessment marks may be recorded separately. A candidate, who has failed or rejected the result, shall retain the internal assessment marks.

Scheme of Valuation for Practicals

C1 and C2 are internal tests to be conducted during 8th and 16th weeks respectively of the semester. C3 is the semester-end examination conducted for 3 hours. The student will be evaluated on the basis of skill, comprehension and recording the results. The student has to compulsorily submit the practical record for evaluation during C1 and C2. For C3, the record has to be certified by the Head of the Department.

• The student is evaluated for 10 marks and 15 marks in C1 and C2 respectively as per the following scheme:

Experiment: 10 for C1 (10 marks)

Experiment: 10, Record: 05 for C2 (15 marks)

• The student is evaluated for 25 marks in C3 as per the following scheme:

Experiment: 25 for C3 (25 marks)

The experimental portion of evaluation (C3) is carried out as per the following scheme:

Formula with proper units and explanation	05
Setting up the apparatus / circuit connections	05
Taking readings and tabulating	05
Calculations and Graph	10
Total	25

QUESTION PAPER PATTERN

DSC Courses and similar courses

Max Marks: 60 Marks		Time: 2.30 hours
	Unit 1	
Long answer questions; Answer 1 out of 2		1 × 10 = 10
	Unit 2	
Long answer questions; Answer 1 out of 2		1 × 10 = 10
	Unit 3	
Long answer questions; Answer 1 out of 2		1 × 10 = 10
	Unit 4	
Long answer questions; Answer 1 out of 2		1 × 10 = 10

Numerical problems; six numerical problems (one each from unit); 4 to be answered 4 × 5 = 20

QUESTION PAPER PATTERN

Open Elective Courses and similar courses

Max Marks: 60 Marks

Time: 2.30 hours

Set three questions from each unit. Students have to answer any six questions out of 9 questions. Each question will carry 10 marks.

QUESTION PAPER PATTERN

DSE/OE Courses and similar courses

Max Marks: 60 Marks		Time: 2.30 hours
	Unit 1	
Long answer questions; Answer 2 out of 3		2 × 10 = 20
	Unit 2	
Long answer questions; Answer 2 out of 3		2 × 10 = 20
	Unit 3	
Long answer questions; Answer 2 out of 3		2 × 10 = 20

Panel of Examiners recommended by Board of Studies in Physics (2023-24)

Dr. Vinaykumar. L	Prof. Madhusudhan G J
JSS College of Arts, Commerce & Science	Associate Professor,
(Autonomous), BN Road, Mysuru-25	Govt. First grade college, Bengaluru
Dr. T.N.Mahadeva Prasad	Smt. Shreedevi .N.D
Govt. First Grade College	JSS College,
Gundulpete	Nanjangud
Prof. Nagesh babu	Sri.M.Mallikarjunaswamy
Yuvaraja college	JSS College for Women,
Mysuru	Chamarajanagar.
Dr.S R Kumarswamy	Smt.N.Bharathi
Maharani Science College for Women,	MMK & SDM College,
Mysuru	Mysuru
Dr.Tippeswamy	Mr. Niranjan
Government first grade college	KSOU,
Mysuru	Mysuru
Smt. Sowmya. B	Mr. Gowtham G K
JSS College for Women,	Shivagangothri, Davangere University,
Saraswathipuram Mysuru	Davangere
Sri. Umesh	Mr. Karthik K G
JSS College for Women,	JSS College of Arts, Commerce & Science
Saraswathipuram, Mysuru	(Autonomous), BN Road, Mysuru-25
Sri. Jagadish.B	Sri. Sukanth.B.M
JSS College of Arts, Commerce & Science	Yuvaraja College,
(Autonomous), BN Road, Mysuru	Mysuru
Dr. Prasanna G D	Dr. Khaleel Ahmed
Shivagangothri, Davangere University,	Govt. College,
Davangere	Hassan
Sri. Sadashiyaiah	Mr. Krishna Mohan
Yuvaraja college	Maharani's science college for women
Mysuru	Mysuru
Dr. Manjunatha. B.C.	Smt. Lakshmi S
Yuvaraja college	JSS College of Arts, Commerce & Science
Mysuru	(Autonomous), BN Road, Mysuru-25
Mr. Yashwanth D B	Smt. Shwetha
JSS College for Women, Saraswathipuram,	Yuvaraja college,
Mysore	Mysuru
Smt. Asharani T S	Mr. Ravitheja R
JSS college for women	JSS College,
Chamarajanagar	Nanjangud
Sri. Harshitha D B	Dr. Manjunatha M S
JSS college for women	Govt. first Grade College,
Chamarajanagar	Chamarajanagara
Smt. Thejakshi	Smt. Roopadevi
Govt. college for Boys , Mandya	Govt. College for Boys, Mandya

Kum. Manjuladevi.M	Smt. Mahalakshmi
Marimallappa college,	Govt. College for boys,
Mysuru	Mandya
Dr.Raman	Mr. Elizer vishwas
RIE , Mysuru	St. Philomenea's college, Mysuru
Dr.Santhosh	Dr. Shankarashan
RIE , Mysuru	NIE, Mysuru
Mr. Madhusudhana R	Mr. Mahadevaprasad P
NIE, Mysuru	SJCE, Mysuru
Smt. Shwetha U S	Smt. Thejaswini
JSS College of Arts, Commerce & Science	Yuvaraja college,
(Autonomous), BN Road, Mysuru-25	Mysuru
Smt. Milana Nagaraju	Mr. Prathap
Yuvaraja college,	Sharadavilas College,
Mysuru	Mysuru
Ms. Meghana R	Ms. Krupashree P
JSS College for Women, Saraswathipuram,	Yuvaraj's science college
Mysuru	Mysuru
Ms. Geethanjali	Mr. Dhanushchandraguru H M
Sharadavilas college,	Sharadavilas College,
Mysuru	Mysuru

JSS COLLEGE OF ARTS, COMMERCE AND SCIENCE (AUTONOMOUS) OOTY ROAD, MYSURU-25

DEPARTMENT OF PHYSICS

PROCEEDINGS OF THE MEETING OF BOARD OF STUDIES FOR THE PROGRAMMES BSc IN PHYSICS-CHEMISTRY, PHYSICS-MATHEMATICS, PHYSICS-COMPUTER SCIENCE, AND PHYSICS-ELECTRONICS, HELD ON 11 NOVEMBER 2023 AT 10.00 AM IN THE CHAMBERS OF THE CHAIRMAN, DEPARTMENT OF PHYSICS, JSS COLLEGE, OOTY ROAD, MYSURU-25

MEMBERS PRESENT	SIGNATURE
Dr. Vinaykumar. L	
Asst. Professor & HOD	
Department of Physics	
JSS College, Ooty Road, Mysuru-25	
Chairman	
(VC Nominee)	
Dr. Shanmukhappa B Kaginelli	
Professor	
Department of Physics	
JSSAHER, Mysuru	
(AC Nominee)	
Dr. Prasanna .G. D	
Assistant Professor,	
Dos in Physics	
Shivagangothri, Davangere University, Davangere (AC Nominee)	
Mr. Jagadish.B	
Assistant Professor, Department of Physics	
JSS College, Ooty Road, Mysuru-25	
Senior faculty	

At the outset, the Chairman, BOS in Physics, welcomed the members to the meeting of BOS and briefed about the agenda to be discussed. The following agenda was placed by the Chairman which was discussed and resolved as follows:

Agenda 1: To frame/ revise, discuss and approve the Scheme/ Syllabus under NEP for the programmes: BSc in PC, PM, PCs, PE from the academic year 2023-24 onwards.

The Chairman appraised the members about the Four year NEP implementation for degree students as per University of Mysore norms and also to teach open elective both in Kannada and English language. Open elective question papers should be prepared in both the version.

Accordingly, a draft revised/ modified Scheme/ Syllabus/panel of examiners was presented and placed before the Board for their opinion and approval.

Resolution: The BOS discussed about various aspects of the NEP and also suggested that as per the guidelines of University of Mysore and Government of Karnataka, the NEP programme can be implemented for the academic year 2023-24.

Agenda 2: To prepare the Panel of Examiners for the examinations for the year 2023-24.

The Chairman presented the proposed Panel of Examiners to I to VIII Semester examinations of 2023-24.

Resolution: After incorporating of certain changes suggested by the members, the Panel of Examiners was approved.

Agenda 3: Approval of Reference Books

The Chairman presented the proposed list of Reference Books to the Members.

Resolution: After incorporating of certain changes suggested by the members, the list of Reference Books was approved.

Agenda 4: Any other matter with the permission of the Chairman

--NIL--

Finally the meeting was concluded with the Chairman thanking the Members for their active participation in the deliberations of the meeting.

Chairman