

JSS COLLEGE OF ARTS COMMERCE AND SCIENCE (An Autonomous College of University of Mysore; Re-Accredited by NAAC with 'A' Grade) OOTY ROAD, MYSURU- 25

PG DEPARTMENT OF BOTANY

Choice - Based Credit System (CBCS)

BOTANY

M.Sc. DEGREE SYLLABUS

2018-19 ONWARDS (MODIFIED ON 2022)

JSS MAHAVIDYAPEETHA JSS COLLEGE FOR ARTS, COMMERCE AND SCIENCE (AUTONOMOUS) OOTY ROAD, MYSURU- 25

POST GRADUATE DEPARTMENT OF BOTANY

M.Sc., Botany Choice - Based Credit System (CBCS) Syllabus (CBCS-CGPA-Modified (2018-19)
CORE SUBJECT: BOTANY – [POST GRADUATE]

DEGREE: M.Sc., BOTANY

FIRS	FIRST SEMESTER Credits: 22			
No.	Course/Paper Code	Title of the Course/ Paper	Hrs/Week L:T:P	Credits
1	HARD CORE 1.1	Virology, Bacteriology, Mycology and Plant Pathology	2:2:2	2:1:1
2	HARD CORE 1.2	Phycology, Bryophytes, Pteridophytes and Gymnosperms	2:2:2	2:1:1
3	HARD CORE 1.3	Systematics of Angiosperms	2:2:2	2:1:3*
4	SOFT CORE 1.1**	Fungal Biology and Biotechnology	2:2:2	2:1:1
5	SOFT CORE 1.2**	Algal Biology and Biotechnology	2:2:2	2:1:1
6	SOFT CORE 1.3**	Lichenology and Mycorrhizal Technology	2:2:2	2:1:1
7	SOFT CORE 1.4**	Phytopathology	2:2:2	2:1:1

^{*}Field Study/Tour: The student shall undertake a field trip for a minimum of 2-3 days and shall submit the herbaria and tour report for evaluation-2 credits.

^{**}Any two soft core papers shall be studied.

SECO	SECOND SEMESTER Credits: 18			
No.	Course/Paper Code	Title of the Course / Paper	Hrs/Week L:T:P	Credits
1	HARD CORE 2.1	Reproductive Biology of Angiosperms and Plant Morphogenesis		
2	HARD CORE 2.2	Cell Biology and Genetics 2:2:2 2:1:1		2:1:1
3	HARD CORE 2.3	Plant Breeding and Evolutionary 2:2:2 2:1:1		
4	SOFT CORE 2.1*	Plant Anatomy and Histochemistry 2:0:2 2:0:1		2:0:1
5	SOFT CORE 2.2*	Ethno-Botany and Intellectual 2:0:2 2:0:1 Property Rights (IPR)		2:0:1
6	SOFT CORE 2.3*	Economic Botany	2:0:2	2:0:1
	** Any two soft core papers shall be studied.			

THIR	THIRD SEMESTER Credits: 16			
No.	Course/Paper Code	Title of the Course /Paper	Hrs/Week L:T:P	Credits
1	HARD CORE 3.1	Biochemistry and Plant Physiology	3	
2	HARD CORE 3.2	Molecular Biology	2:2:2	2:1:1
3	HARD CORE 3.3	Plant Biotechnology	2:2:2	2:1:1
4	SOFT CORE 3.1*	Molecular Genetics of Plants	2:2:2	2:1:1
5	SOFT CORE 3.2*	Molecular Plant Pathology	Molecular Plant Pathology 2:2:2 2:1	
6	SOFT CORE 3.3*	Plant Propagation and Plant 2:2:2 2:1:1 Breeding		2:1:1
7	SOFT CORE 3.4*	Phyto-chemistry and Herbal 2:2:2 2:1:1 Technology		2:1:1
8	OPEN ELECTIVE 3.1	Plant Propagation Techniques 2:2:0 2:1:		2:1:0
	OPEN ELECTIVE 3.2	Medicinal Plants	2:2:0	2:1:0
	OPEN ELECTIVE 3.3	Plant Diversity and Human Welfare	2:2:0	2:1:0
	* Any one soft core, one open elective courses/papers shall be studied.			

FOU 16	RTH SEMESTER			Credits:	
No.	Course/Paper Code	Title of the Course /Paper	Hrs/Wk L:T:P	Credits	
1	HARD CORE 4.1	Ecology, Conservation Biology and Phytogeography	2:2:2	2:1:1	
2	HARD CORE 4.2	Project Work * 4:2:2		8	
3	SOFT CORE 4.1*	Seed Technology 2:2:2 2:1:1			
4	SOFT CORE 4.2* Seed Pathology 2:2:2 2:1:1			2:1:1	
5	SOFT CORE 4.3*	OFT CORE 4.3* Bio -Analytical Techniques 2:2:2 2:1:1			
	*Project Work: The student shall undertake a Project Work in the Department or in any other University or Institute under the guidance of a Research Supervisor and shall submit a Project Report duly signed by Student and Research Supervisor for Evaluation.				

Important Note:

Student is required to earn the credit for qualifying M.Sc. Botany from Department of Botany as follows:

Hard Core offered by the Department= 46 (Against maximum of 56) Soft Core offered by the Department = 26 (Against minimum of 16) Minimum Open Elective to be earned by the Student (Outside the Department) = 04 A total of 76 Credit is required for qualifying M.Sc. Botany Course.

SCHEME OF EXAMINATION/ASSESSMENT MODEL QUESTION PAPER (THEORY)

JSS COLLEGE FOR ARTS, COMMERCE AND SCIENCE (AUTONOMOUS) OOTY ROAD, MYSURU- 25

POST GRADUATE DEPARTMENT OF BOTANY

M.Sc., Degree -----Semester Examination May/June-20--BOTANY

	Time: 3 Hrs	1) Answer all questions.	 Max Marks: 70
		2) Draw neat and labelled diagrams wherever necessary.	
I. Aı	nswer the followin	g; (10MCQs of 1 Marks each)	10 X 1 = 10
	2 from Unit I	,	
	3 from Unit II		
	2 from Unit III		
	3 from Unit IV		
II. A	nswer the following	ng;	4 X 5 = 20
		vith internal choice	
	2 from Unit II v	with internal choice	
	2 from Unit III	with internal choice	
	2 from Unit IV	with internal choice	
III. A	Answer the followi	ng;	4 X10 = 40
	2 from Unit I w	vith internal choice	
	2 from Unit II v	with internal choice	
	2 from Unit III	with internal choice	
	2 from Unit IV	with internal choice	
		SCHEME OF PRACTICAL EXAMINATION/ASSESSMEI	<u>NT</u>
		MODEL QUESTION PAPER (PRACTICALS)	
		JSS COLLEGE FOR ARTS, COMMERCE AND SCIENCE	
		(AUTONOMOUS) OOTY ROAD, MYSURU- 25	TW.7
		POST GRADUATE DEPARTMENT OF BOTAN	NY
		M.Sc., Degree I Semester Examination May/June-2018	
		BOTANY	
		Course/Paper:	
		Course/Paper Code	
	Time: 3 Hrs		 Max Marks: 70
		ng Experiment/Micro-preparation /Plant identification	15
		periment/ Demonstrations/ Procedure Writing	10
	•	comments (3x5 Marks)	15
		ation 5x2 Marks)	10
	Q V. Viva-voc		10
	Q VI. Class Red	cords/ Submissions	10

PO M.SC. BOTANY

Sl. No.	PO	
1.	Conduct investigations of complex problems by the use of research-based knowledge on an	
	independent term project.	
2.	Transfer of appropriate knowledge and methods from one topic to another within the subject.	
3.	Carry out practical work, in the field and in the laboratory, with minimal risk.	
4.	Able to think logically and organize tasks into a structured form and assimilate knowledge and ideas	
	based on wide reading of text books and through the internet.	
5.	Apply the scientific knowledge of basic science, life sciences and fundamental process of plants to	
	study and analyse any plant form.	
6.	Knowledge and understanding of the range of plant biology in terms of structure, function and	
	environmental relationships.	
7.	Apply reasoning informed by the contextual knowledge to assess plant diversity, and the consequent	
	responsibilities relevant to the biodiversity conservation practice.	

PSO M.SC. BOTANY

Sl. No.	COURSE	PSO
1.	Algal Biology and Biotechnology	Phylogeny, thallus organisation, economic and ecological importance of alagal community
2.	Biochemistry and Plant Physiology	Biomolecules, metabolic pathways and stress physiology in plants
3.	Cell Biology and Genetics	Cell originals and Mendelian principles
4.	Ecology, Conservation Biology and Phytogeography	Diversity of vegetation, distribution and its conservation
5.	Economic Botany	Economic values of different crop plants and their applications
6.	Major Project	Hands on experience in various fields of plant science
7.	Molecular Biology	Molecular level organisation in prokaryotes and eukaryotes with respect to various mechanisms involved
8.	Plant Anatomy and Histochemistry	Anatomical features and organisation of cells in plants
9.	Plant Breeding and Evolutionary Biology	Plant breeding methods, procedures and their application for crop improvement
10.	Plant Biotechnology	Tissue culture techniques and its application in development of resistant varieties
11.	Plant Propagation and Plant Breeding	Propagation methods and plant breeding procedures and their application in different fields
12.	Plant Propagation Techniques	Propagation methods and procedures and their application in different fields
13.	Phycology, Bryophytes, Pteridophytes and Gymnosperms	Distribution, classification and phylogeny of lower plant communities
14.	Phytopathology	Concepts of plant diseases defence mechanisms in plants and study of plant diseases
15.	Reproductive Biology of Angiosperms and Plant Morphogenesis	Embryological study of growth and development using plant models
16.	Seed Technology	Industrial scale processing of seeds up to marketing

17.	Systematics of Angiosperms	Angiospermic plant family study with their phylogeny
		Diversity, distribution of microorganism with respect to their economic aspects

CO M.SC. BOTANY

Sl. No.	COURSE	СО
1.	Algal Biology and Biotechnology	Specify in depth of thallus organization and phylogeny in algae
2.	Algal Biology and Biotechnology	Understand the details of toxins, blooms and distributions of algae
3.	Algal Biology and Biotechnology	Deliberate in depth about cultivation and marketing algae
4.	Algal Biology and Biotechnology	Specify the details of Algal products and uses
5.	Biochemistry and Plant Physiology	Learn in details with biomolecules and their function
6.	Biochemistry and Plant Physiology	Understand in depth about solute transport and photosynthesis in plants
7.	Biochemistry and Plant Physiology	Specify the details of metabolism of nitrogen, lipids and plant hormones
8.	Biochemistry and Plant Physiology	Understand in depth about Stress physiology
9.	Cell Biology and Genetics	Learn in detail about cell membranes transport and proteins
10.	Cell Biology and Genetics	Deliberate the Functions of cell organelles, programed cell death
11.	Cell Biology and Genetics	Specify the extensions of Mendelian principles
12.	Cell Biology and Genetics	Learn about Sex determination and dosage compensation
13.	Ecology, Conservation Biology and Phytogeography	Understand the diversity of ecosystem and types of ecosystems
14.	Ecology, Conservation Biology and Phytogeography	Learn the in details of pollution and environmental biology
15.	Ecology, Conservation Biology and Phytogeography	Study the importance of biodiversity and conservation biology
16.	Ecology, Conservation Biology and Phytogeography	Detailed study of phytogeography and crop distribution
17.	Economic Botany	Specify the details of cereals, millets, pulses, oil yielding plants and study of horticultural plants and floriculture
18.	Economic Botany	Deliberate the characteristics of sugar yielding plants, spices and condiments
19.	Economic Botany	Understand the importance of fibre, timber and gum yielding plant
20.	Economic Botany	Deliberate on the medicinal plants and their applications
21.	Major Project	Learn the details of literature survey and methodology in research
22.	Molecular Biology	Identify the characteristics of genetic materials and its replication
23.	Molecular Biology	Learn the details of molecular basis of mutation, repair and recombination
24.	Molecular Biology	Deliberate the details of RNA formation, processing of RNA and post-RNA
25.	Molecular Biology	Understand in depth of gene regulation in prokaryotes and eukaryotes
26.	Plant Anatomy and Histochemistry	Learn in details of primary vegetative body of the plants
27.	Plant Anatomy and Histochemistry	Deliberate in details of differentiation in vascular tissues and study of apical meristems in shoot and root
28.	Plant Anatomy and Histochemistry	Deliberate the characteristics of secondary growth
29.	Plant Anatomy and	Understand the details of plant histochemistry

	Histochemistry	
30.	Plant Breeding and Evolutionary Biology	Learn in depth about plant breeding methods and techniques
31.	Plant Breeding and Evolutionary Biology	Understand the details of breeding for specific purposes
32.	Plant Breeding and Evolutionary Biology	Learn the details of Nature of evolution
33.	Plant Breeding and Evolutionary Biology	Identify the characteristics of variation and speciation
34.	Plant Biotechnology	Understand in depth about plant tissue culture and its techniques
35.	Plant Biotechnology	Specify the genetic engineering and tools used in it
36.	Plant Biotechnology	Understand the details of genetic manipulation, transgenic approaches to produce resistant plants
37.	Plant Biotechnology	Learn the details of engineering of crop plants for production of secondary metabolites
38.	Plant Propagation and Plant Breeding	Learn the details of importance of plant propagation, vegetative propagation and micro propagation
39.	Plant Propagation and Plant Breeding	Understanding of basic concepts of plant breeding and genetics
40.	Plant Propagation and Plant Breeding	Study types, purposes of plant breeding
41.	Plant Propagation and Plant Breeding	Deliberate study of advanced breeding aspects
42.	Plant Propagation Techniques	Learn the details of importance of plant propagation
43.	Plant Propagation Techniques	Understand in depth about types of vegetative propagation
44.	Plant Propagation Techniques	Learn the techniques of budding and layering
45.	Plant Propagation Techniques	Deliberate in details with examples of micro propagation in forestry and horticulture plants
46.	Phycology, Bryophytes, Pteridophytes and Gymnosperms	Understand the details of diversity, distribution, pigmentation a life cycle of algae
47.	Phycology, Bryophytes, Pteridophytes and Gymnosperms	Deliberate in depth of Bryophytes life cycle, classification, phylogeny and Economic importance
48.	Phycology, Bryophytes, Pteridophytes and Gymnosperms	Understand the details of Pteridophytes life cycle, phylogeny, classification, economic importance and anatomy
49.	Phycology, Bryophytes, Pteridophytes and Gymnosperms	Write down in details with examples Gymnosperms history, reproduction, edconomic importance and interrelationship
50.	Phytopathology	Learn the details of the concept, causative agents and disease cycle of plant pathogens
51.	Phytopathology	Deliberate the details of defense mechanisms in plants and its genetics
52.	Phytopathology	Study of Management of plant diseases
53.	Phytopathology	Identify in details with examples of diseases in crop plants
54.	Reproductive Biology of Angiosperms and Plant Morphogenesis	Understanding the microsporogenesis and historical overview
55.	Reproductive Biology of Angiosperms and Plant Morphogenesis	Specify in details with examples about megasporogeneis, fertilization, endosperm and embryo
56.	Reproductive Biology of Angiosperms and Plant Morphogenesis	Specify the details of models and concepts of plant morphogenesis
57.	Reproductive Biology of Angiosperms and Plant Morphogenesis	Understand in details with examples of plant growth and development, photomorphogenesis
58.	Seed Technology	Understand the seed science and concepts
59.	Seed Technology	Study the seed production and processing methods

60.	Seed Technology	Learn about seed quality parameters and tests
61.	Seed Technology	Deliberate the procedure of seed certification
62.	Systematics of Angiosperms	Understand the principles and applications of Taxonomy of
63.	Systematics of Angiosperms	angiosperms Specify the details of taxonomic literature
64.	Systematics of Angiosperms Systematics of Angiosperms	Deliberate in details with examples Dicot and monocot family and features of classification systems
65.	Systematics of Angiosperms	Specify in details molecular systematics with examples of softwares and databases
66.	Virology, Bacteriology, Mycology and Plant Pathology	Learn the classification and characteristics of viruses, viroids, prions and diseases of it
67.	Virology, Bacteriology, Mycology and Plant Pathology	Deliberate in details with examples of Bacteria, archeabacteria, actinomycetes and mycoplasma and its economic importance
68.	Virology, Bacteriology, Mycology and Plant Pathology	Specify the Fungal diversity, life cycle and economic importance of fungi
69.	Virology, Bacteriology, Mycology and Plant Pathology	Understand in details of etiology, distribution and management of plant disease

BOTANY: I SEMESTER- HARD CORE 1.1 VIROLOGY, BACTERIOLOGY, MYCOLOGY AND PLANT PATHOLOGY

Theory-32 Hrs

Unit-1: Virology: Origin and evolution of viruses; Classification of viruses-ICTV and Baltimore Systems; Genome diversity in viruses; Methods of cultivation of viruses; Purification and detection of viruses; Transmission of viruses; Mechanism of replication of DNA and RNA viruses; Viroids - Structure and multiplication; Prions - structure and multiplication; Prion diseases.

Unit-2: Bacteriology: Introduction and classification of Bacteria by Bergey's Manual of Determinative and Sytematic Bacteriology; C. R. Woese- Three domain classification of Bacteria; Archaebacteria and Eubacteria - diversity and evolution; Nutritional types of bacteria; Bacterial growth; Recombination in bacteria (conjugation transformation, and transduction); Brief account on actinomycetes; Structure and multiplication of Mycoplasma and Phytoplasmas; Economic importance of bacteria.

Unit -3: Mycology: Present status of fungi; Outline classification of fungi (Ainsworth-1973). Vegetative organization in fungi; Nutrition in fungi (saprotrophs, biotrophs, necrotrophs; symbiotrophs); Methods of reproduction in fungi - Asexual and sexual methods; Spore liberation in fungi; Evolution of sex in fungi; Heterothallism and parasexuality; Life cycle pattern and phylogeny of Myxomycotina, Mastigomycotina, Zygomycotina, Ascomycotina, Basidiomycotina and Deuteromycotina; Fungi and their economic importance.

Unit-4: Plant Pathology: Concepts and scope of plant pathology; Plant diseases and crop losses; Classification of plant diseases; Parasitism and disease development; Effect on physiology of host; Host range of pathogens; Defence Mechanisms in Plants; Plant Disease epidemics and plant disease forecasting; Methods of plant disease management; Study of plant diseases- Sandal Spike, Citrus Canker, Bacterial Blight of Paddy, Late Blight of Potato, Downy Mildew of Bajra, Tikka Disease of Ground nut, Grain Smut of Sorghum. Phloem Necrosis of Coffee, Root Knot Disease of Mulberry.

Practicals-32 Hrs

- 1) Laboratory guidelines, design, tools, equipments and other requirements for studying microorganisms.
- 2) Measuring the dimensions of microorganisms using Micrometry.
- 3) Determining total count of microbes using Haemocytometer.
- 4) Gram and special staining of bacteria.
- 5) Preparation of NA, PDA, sterilization, pouring, inoculation and culturing of bacteria/fungi.
- 6) Staining of fungi including VAM fungi.
- 7) Identification of fungi.
- 8) Measurement of bacterial growth by Spectrophotometer.
- 9) Recording environmental factors (Temperature, RH, and Rainfall and wind velocity).
- 10) Splash liberation of spores from diseased tissue.
- **11)** Estimation of total phenols in diseased and healthy plant tissues.
- **12)** Study of the following diseases: Sandal Spike, Citrus canker, Bacterial Blight of paddy, Late Blight of Potato. Downy Mildew of Bajra, Tikka disease of ground nut, Grain smut of Sorghum, Phloem Necrosis of Coffee, Root Knot disease of Mulberry.

- 1) Madigan, M.T. 2012. Brock Biology of Microorgasms, 13t edn. Benjamin Cummings.
- 2) Willey, J, Sherwood, L. and Woolverton, C.J. 2013. Prescott's Microbilogy 9th edn. Mc Graw- Hill Educations.
- 3) Wagner, E.K, and Hewlett, M.J. 2009. Basic Virology. Blackwell Science Ltd. 2nd edn. USA.
- 4) Kodo, C.I. and Agarwal, H.O. 1972. Principles and Techniques in Plant Virology, Van Nostrand, Reinhold Company, New York.
- 5) Conrat, F.H., Kimball, P.C. and Jay, L. 1988.V irology. Prentice Hall, Englewood Chiff, New Jercy.
- 6) Jawaid, A. Khan and Jeanne Dijkstra. 2002. Plant Viruses as Molecular Pathogens. Food Products Press, NY
- 7) Alexopoulos, C.J. Mims, C.W. and Blackwell, M. 2013. Introductory Mycology 4th edn. Wiley.
- 8) Singh, R. S. 2009. Plant Disease. 9th edn. Oxford and IBH Pub.Co., New Delhi.
- 9) Agrios, G. N. 2005. Plant Pathology 5th edn. Academic Press, San Diego.
- 10) Rangaswamy, G. and Mahadevan, A. 2002. Diseases of crop plants in India, Prentice Hall of India Pvt.Ltd. New Delhi.
- 11) Mehrotra, R. S. 2003. Plant Pathology. 2nd edn. Tata Mc Graw-Hill Pub. Co. Ltd., New Delhi.
- 12) Cann, A.J. 2012. Principles of Molecular Virology 5th edn. Elsevier Ltd, USA.
- 13) Flint, S.J. Enaquist, L.W., Rancnicllo, V. R. and Skalka, A.M. 2009. Principles of Virology pathogenesis and control. 3rd edn. APS Press, USA.
- 14) Hall, R. 2014. Plant Virology, 5th edn. Elsevier, USA.
- 15) Aneja, K.R. 2003. Experiments in Microbiology plant Pathology and Biotechnology, 4th edn. New Age International Publishers, New Delhi.
- 16) Holt, J.G., Krige, N.R., Sneath., P.H.A. Stuley, J.T. and Williams, S.T. 2010. Bergey's Manual of Determinative Bacteriology, 9th edn. Williams and Wilkins, USA.

BOTANY: I SEMESTER - HARD CORE 1.2 PHYCOLOGY, BRYOPHYTES, PTERIDOPHYTES AND GYMNOSPERMS

Theory-32 Hrs

Unit-1: Phycology: Diversity and distribution of algae; Unicellular, colonial, filamentous, heterotrichous, parenchymatous, pseudoparenchymatous, siphonous forms; General characteristics, classification and phylogeny of algae; Pigmentation in algal groups; Role of photosynthetic and accessory pigments; Life cycles in algae - haplontic, diplontic, isomorphic, heteromorphic; Economic importance of algae.

- **Unit -2: Bryophytes:** Introduction, general characteristics, classification and phylogeny of Bryophytes; Distribution, habitat, external and internal morphology and reproduction; Comparative account on gametophytes and sporophytes of bryophytes; Economic and ecological importance.
- **Unit -3: Pteridophytes:** Introduction, classification and phylogeny; Morphology, anatomy reproductive biology and phylogeny; Psilophytes, Lycophytes, Sphenophytes, Filicophyta; Evolution of sorus; evolution of sporangium; Gemetophyte development homosporous and heterosporous ferns; Heterospory and seed habit; Stelar evolution in Pteridophytes; Ecology of Pteridophytes; Economic importance.
- **Unit- 4: Gymnosperms:** Distribution, general characteristics, classification and phylogeny of Gymnosperms; Range in morphology, anatomy, reproduction and interrelationships of Cycadales, Ginkgoales, Coniferales, Gnetales; Pteridosperms; Economic importance of Gymnosperms.

Practicals-32 Hrs

- **1-4) Algae:** Study of Cyanophyceae: *Anabaena, Oscillatoria*; Study of Chlorophyceae: *Oedogonium, Pediastrum;* Study of Phaeophyceae: *Turbinaria, Ectocarpus*; Study of Rhodophyceae: *Gracilaria, Batrachospermum*; Economic products of algae.
- 5-7) **Bryophytes:** Study of morphology, anatomy and reproductive morphology Hepaticopsida- *Marchantia, Dumortiera*; Anthocerotopsida- *Anthoceros, Notothylas*; Bryopsida- *Bryum* and *Polytrichum*.
- 8-10) **Pteridophytes:** Study of vegetative habit, anatomy and reproductive morphology of *Psilotum, Lycopodium, Isoetes, Ophioglossum, Botrychium, Angiopteris, Pteris, Hymenophyllum, Marselia, Salvinia, Azolla; Paleobotany Study of Lepidodendrales, Calamitales, Sphenophyllales and Coenopteridales (Fossil Pteriodophytes).*
- 11-12) **Gymnosperms:** Study of morphology, anatomy and reproductive morphology of *Zamia, Pinus* and *Ephedra, Ginkgo, Auracaria, Podocarpus, Gnetum, Agathis, Cupressus, Thuja*; Economic importance of Gymnosperms.

- 1) Bower, F.O. 1935. Primitive land plants, Macmillan, London.
- 2) Campbell, D. H. 1972. Evolution of land plants (Embryophytes), Central Book Department Allahabad.

- 3) Watson, E.V. 1971. The structure and life of Bryophytes Hutchinson and Co. Ltd. London.
- 4) Parihar, N.S. 1970 An Introduction to Embryophyta Vol. 1. Bryophyta. Central Book Department, Allahabad.
- 5) Prempuri, 1981. Bryophytes, Morphology, Growth and Differentiation. Atmaram and sons, New Delhi.
- 6) Nayar, M.C., Rajesh, K.P. and Madhusoodanan, P.V. 2005. Bryophytes of Wyanad.
- 7) Murthy, A.V.S.S. 2005. A text book of algae. IK International Pvt., Ltd., New Delhi.
- 8) Bold, H. C. and Wynne, M.J. 1978. Introduction to the algae. Structure and reproduction. Prentice Hall.
- 9) Chapman and Chapman. 1973. The Algae. Macmillan Co., New York.
- 10) Fritsch, F. E. 1935. Structure and Reproduction of Algae Vol. I & II. Cambridge Univ. Press, London.
- 11) Odum, E.P. Fundamentals of Ecology. 3rd edn. Toppan Co., Ltd., Japan.
- 12) Round, F. E. 1973. Biology of the algae. Edward Arnold Ltd., London.
- 13) Smith, G.M. 1951. Manual of Phycology. Pub. Co. Waltham., Mass.
- 14) Venkataraman, G.S. 1974. Algae form and function. Today & Tomorrow's Pub., New Delhi.
- 15) South, G. R. And Whittick, A. 1987. Introduction to Phycology. Blackwell Scientific Publication, UK.
- 16) Hoek, V., Mann, D. G. And Jahns, H. M. 1995. An introduction to Phycology. Cambridge University Press, UK.
- 17) Biswas, C. and Johri, B. M. 1997. The Gymnosperms. New Age Publishers, New Delhi.
- 18) Rashid A. 1986. An Introduction to Pteridophytes. Vikas, New Delhi.
- 19) Sporne K. R. 1969. Morphology of Gymnosperms. Hutchinson University Library, London.
- 20) Sporne, K. R. 1969. Morphology of Pteridophytes. Hutchinson University Library, London.
- 21) Chase, M.W. and Reveal, J.L. 2009. A phylogenetic classification of the land plants to accompany APG III. Botanical Journal of the Linnean Society, 161: 122-127.
- 22) Sundararajan, S. 2007. Introduction to Pteridophyta. New Age International Publishers, New Delhi.
- 23) Vashishta, P.C. (2008). Botany for Degree Students: Pteridophyta. S. Chand & Co. Ltd., New Delhi.

BOTANY: I SEMESTER - HARD CORE 1.3 SYSTEMATICS OF ANGIOSPERMS

Theory-32 Hrs

Unit-1: Introduction to plant systematics; Plant classification systems-artificial, natural and phylogenetic systems; Contributions of Carolus Linnaeus, Michel Adanson, de Jussieu, de Candolle to plant classification; Concepts of taxonomic hierarchy; Taxonomic Categories-Genus concept; Species concept; Intraspecific categories; subspecies; varieties and forms; History of botanical nomenclature; ICBN and ICN aims and principles; Rules and recommendations; Rule of priority; Typification; Author citation, Legitimate and illegitimate names; Name changes and synonyms; Effective and valid publication; Herbarium and its significance; Botanical gardens.

Unit-2: **Taxonomic Literature:** General taxonomic indices, world floras and manuals; Monographs and revisions; Bibliographies, catalogues and reviews; Periodicals, glossaries and dictionaries; Hortus Malabaricus; Taxonomic websites-IPNI, Plant List, Tropicos, Botanico-Periodicum-Huntianum (BPH); Biodiversity Heritage Library (BHL); Botanicus, Index Herbariorum; Taxonomic Keys- bracketed keys, indented keys, numbered keys, edge punched and body punched keys.

Unit-3: Study of plant classification Systems; Broad outlines of Bentham and Hooker's system, Engler and Prantl's system, Hutchinson's system, Takhtajan's system, and Cronquist's system; Numerical Taxonomy-principles, selection of characters, merits and demerits; Angiosperm Phylogeny Group (APG) III & IV classification; Study of angiosperm families-Magnoliaceae, Nympheaceae, Urticaceae, Papaveraceae, Euphorbiaceae, Acanthaceae, Rubiaceae, Alismataceae, Cyperaceae, Commelinaceae, Zingiberaceae, Liliaceae, Dioscoreaceae and Orchidaceae.

Unit-4: Molecular Systematics: Nuclear, mitochondrial and chloroplast genes. Gene sequencing, analysis of molecular data, alignment of sequences; Phylogenetic tree construction-Maximum Likelihood and Neighbour Joining Methods; Phylogenetic analysisrooted and unrooted trees; Data analysis- alignment, substitution, model building; Phylogenetic softwares-CLUSTAL W, MEGA, Mesquite, PAUP, PHYLIP, Treefinder, TreeBase.

Practicals-32 Hrs

- 1) Methods of preparation and maintenance of Herbaria.
- 2-4) A field trip of three days to a floristically rich area to study plants belonging to different families (Every student shall submit a report for evaluation for two credits).
- 5-10) Identification of the flowering plants in and around Mysore using keys, floras and monographs.
- 11-12) Construction of phylogenetic tree based on molecular data of plant species retrieved from GenBank.

- 1. Cronquist, A. 1981. An Integrated system of classification of flowering plants. Columbia University Press, New York.
- 2. Simpson, M.G. 2006. Plant Systematics. Elsevier, Amsterdam.

- 3. Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.A. and Donoghue, M.J. 2002. Plant Systematics: A phylogenetic Approach. Sinauer Associates, Inc., Massachusetts.
- 4. Gurucharan Singh. 2004. Plant Systematics: Theory and Practice, Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.
- 5. Jeffrey, C. 1982. An introduction to Plant Taxonomy. II Edn., Cambridge Uni. Press.
- 6. Mondal, A.K. 2009. Advanced Plant Taxonomy. New Central Book Agency Pvt. Ltd., Kolkata, WB.
- 7. Pullaiah, T. 1998. Taxonomy of Angiosperms. Regency Publications, New Delhi.
- 8. Johri, B.M. and Bhatacharjee, S.P. 1994. Taxonomy of Angiosperms. Narosa Publishers, New Delhi.
- 9. Lawrence, G.H.M. 191. Taxonomy of Vascular Plants. MacMillan, London.
- 10. Chase, M.W. and Reveal, J.L. 2009. A phylogenetic classification of the land plants to accompany APG III. Botanical Journal of Linnaean Society, 161: 122-127.
- 11. Nei, M. and Kumar, S. 2000. Molecular Evolution and Phylogenetics. Oxford Univ. Press, New York
- 12. APG-IV. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants APG-IV. Botanical Journal of Linnaean Society, 181: 1-20.

BOTANY: I SEMESTER - SOFT CORE 1.1 FUNGAL BIOLOGY AND BIOTECHNOLOGY

Theory-32 Hrs

Unit-1:Introduction and historical overview of mycology; General characteristics and importance of fungi in human life; Fungi –Taxonomy and Systematics; Fungi in genetic and applied research; Estimation of Fungal diversity; Quantitative Indices- species richness, species evenness and species abundance; Molecular methods used for fungal diversity estimation-nuclear genome, messenger RNA transcripts, Ribosomal/DNA sequence comparisons and mitochondrial genome.

Unit-2:Macro fungi and micro fungi living on plant substrata; Lignicolous macrofungi; Lichenized fungi; Sequestrate fungi; Endophytic fungi; Saprobic soil fungi; Fungi in stressful environment; Mutualistic, arbuscular, and endomycorrhizal fungi; Yeasts; Fungicolous fungi; Fungi in fresh and marine water habitats; Fungi associated with aquatic animals; Fungi as parasites of humans and plants; Fungi associated with animals, insect, arthropod and nematodes; Coprophilous fungi.

Unit-3:Fungal Fermentation and Food Products: Food and Beverages; Single cell proteins-Myco-proteins; Food processing by fungi-bread, soybean products, cheese and fermented milk; Fungal secondary metabolites-antibiotics, immunosuppressive agents, anti-tumour agents, fungal toxins as medicines; Fungal pigments; Steroid transformation; Fungal enzymes; Bio-control agents; Application of molecular biology in fungal biotechnology.

Unit-4: Mushrooms and fungi in medicine; Toxic macromycetes; Mushroom cultivation; Model organisms- *Saccharomyces cerevisiae/Neurospora crassa*; Bio-deterioration of food grains and mycotoxins; Fungal communities of herbivore dung; The fungal communities of composts; Fungal interactions and practical exploitation; Heavy metals in fungiaccumulation and sorption; Biotechnology of wood rotting fungi.

Practicals-32 Hrs

- 1) Study of Myxomycetes and Chytridiomycetes
- 2) Study of Plasmodiophoromycetes and Oomycetes
- 3) Study of Zygomycetes
- 4) Study of Ascomycetes
- 5) Study of Basidiomycetes
- 6) Study of

Deuteromycetes 7)Study of

Lichens

- 8) Study of VAM fungi
- 9) Detection of aflatoxin B1
- 10) Cultivation of Oyster mushroom.
- 11) Alcoholic fermentation of grape juice by Saccharomyces.
- 12) Cultivation of *Penicillium* and testing antibiotic principle.
- 13) Study of edible and poisonous mushrooms.
- 14) Study of fungal model organisms Saccharomyces cerevisiae/Neurospora crassa

- 1) Alexopoulos, C. J., Mims, C. W. and Blakwell, M. 2007. Introductory Mycology 4th edn. Wiley India, New Delhi.
- 2) Deacon, J. W. 1997. Modern Mycology 3rd edn. Blackwell Science publishers, London.

- 3) Mehrotra, R.S. and Aneja, K.R. 1990. An Introduction to Mycology, New Age International (P) Limited, New Delhi.
- 4) Mueller, G M; Bills, GF and Foster, M.S. 2004. Biodiversity of Fungi, Elsevier Academic Press, New York.
- 5) Rai, M. and Bridge, P.D. 2009. Applied Mycology, CABI International, UK.
- 6) Carlile, M.J. Watkinson, S.C. and Gooday, G.W. 2001. The Fungi, 2nd edn. Academic Press, USA.
- 7) Webster, J. and Weber, R.W.S. 2007. Introduction to Fungi. 3rd edn. Cambridge University Press, Cambridge.

BOTANY: I SEMESTER - SOFT CORE 1.2 ALGAL BIOLOGY AND BIOTECHNOLOGY

Theory-32 Hrs

Unit-1:Algal Biology: Historical development of Phycology and contributions of Phycologists; Thallus organization in algae-Cyanophyceae, Chlorophyceae, Charophyceae, Euglenophyceae, Xanthophyceae, Bacillariophyceae, Phaeophyceae and Rhodophyceae; General characteristics, algal classification, affinities and phylogeny- polyphasic approach; Molecular markers for phylogenetic study; Algal physiology- ultra-structure of cells; Photosynthesis and respiration.

Unit-2: Algal blooms and Toxins: Blooms produced by algal groups; Toxins produced by cyanobacteria, diatoms, dinoflagellates, prymnesiophytes and eugleoids; bioaccumulation and biomagnification; effects of toxins on aquatic life and humans; Scenario in coastal waters of India- monitoring and safety measures; Algal communities of extreme environments- Thermal hot springs, cold springs, snow and ice; Fresh water algae-Ecological classification of fresh water organisms; Lentic communities of algae (pond, lake, bog, swamp); Lotic communities (streams, rivers, rapids; Marine algae- Marine biota; zonation; quantitative study of phytoplanktons, marine communities of algae.

Unit-3: Algal Biotechnology: Algal culture techniques; general principles; physical parameters; culture media; strain improvement; **Algal cultivation methods**-conventional, advanced; **Cultivation of microalgae-***Spirulina* and *Dunaliella*; Media, seeding, cultivation systems, harvesting; processing, drying methods, packaging, marketing; Algal cultivation and production in India; **Cultivation of macroalgae-***Porphyra;* Nutritional value; importance of life cycle; methods of cultivation in advanced countries; Pillar, semi raft floating and open sea cultivation.

Unit-4: Applications of algae/products: Pollution indicators, treatment of waste water plants, heavy metal toxicity and phyco-remediation; Bio-fouling and biofuel production; Algal products as sources of nutraceuticals; Food colorants; Aquaculture feed; Therapeutics and cosmetics; Medicines; Dietary fibres from algae and uses; Biotechnological applications of algal silica and oils.

Practicals-32 Hrs

- 1) Study of fresh water planktonic forms in the lake samples.
- 2) Study of fresh water diatoms.
- 3) Chlorophyceae: *Ulva, Caulerpa, Halimeda, Acetabularia*.
- 4) Xanthophyceae: Mounting of Botrydium from soils.
- 5) Phaeophyceae: *Dictyota, Sargassum, Cystophyllum.* Rhodophyceae: *Gracilaria, Gelidium.*
- 6) Cyanophyceae: Microcystis, Nostoc, Spirulina.
- 7) Estimation of carotene content in algal cells.
- 8) Culturing of microalgae: Spirulina/ Chlorella/Scenedesmus/Dunaliella.
- 9) Applications of algal products: Agar, spirulina tablets/powder, beta-carotene, phycobiliproteins, triglycerides, Mycosporine like amino acids (MAA), diatom silica as nanoparticles.
- 10) Visit to National Institute of Oceanography, Goa.
- 11) Study of algal herbaria.

- 1) Bold, H. C. and Wynne, M. J. 1978. Introduction to the algae. Structure and reproduction. Prentice Hall, New York.
- 2) Chapman and Chapman, V.J. 1973. The Algae. Macmillan Co., New York.
- 3) Fritsch, F. E. 1935. Structure and reproduction of Algae Vol. I and II. Cambridge University Press, London.
- 4) Hoek, V., Mann, D. G. and Jahns, H. M. 1995. An introduction to Phycology, Cambridge University Press, UK.
- 5) Murthy, A.V.S.S. 2005. A text book of algae. I.K. International Pvt., Ltd., New Delhi.
- 6) Odum, E. P. Fundamentals of Ecology. 3rd edn. Toppan Co., Ltd., Japan.
- 7) Round, F. E. 1973. Biology of the algae. Edward Arnold Ltd., London.
- 8) Southcott, G. R. and Whittick, A. 1987. Introduction to Phycology. Blackwell Scientific Publication, UK.
- 9) Venkataraman, G.S.1974. Algae form and function. Today and Tomorrow's Pub., New Delhi.
- 10) Bux *et al.* (eds.). 2016. Algae Biotechnology: Products and Processes, Springer, ISBN 9783319123332 (P), 9783319123349 (Online).
- 11) Chu, W. 2012. Biotechnological Applications of Microalgae. IeJSME 6(1): S24-S37.

BOTANY: I SEMESTER - SOFT CORE 1.3 LICHENOLOGY AND MYCORRHIZAL TECHNOLOGY

Theory-32 Hrs

Unit-1: Introduction: Photobionts- identification, reproduction, and taxonomy of photobionts; Occurrence within lichens; Mycobionts- Lichenized versus nonlichenized fungi; Bryophilous and folicolous lichens; Thallus morphology and anatomy; Growth forms - crustose lichens, foliose lichens, fruticose lichens; Vegetative structures- Homoiomerous thallus, stratified thallus, cortex, epicortex, and epinecral layer, photobiont layer and medulla, lower cortex, Attachment organs and appendages; Cyphellae and pseudocyphellae; Cephalodia (Photosymbiodemes); Reproductive structures- sexual reproduction in lichenforming ascomycetes; Mating systems, dikaryon formation, Ascomal ontogeny, Ascosporogenesis; Ascus structure and function; Generative reproduction: ascoma, perithecia, apothecia, Thallinocarpia, Pycnoascocarpia, Hysterothecia, Asci, Basidioma; Vegetative reproduction- aposymbiotic propagules, symbiotic propagules; Systematics of lichenized fungi- History, classification and phylogeny.

Unit-2: Morphogenesis- Acquisition of a compatible photobiont; Recognition and specificity; Structural and functional aspects of the mycobiont—photobiont interface; Genotypes and phenotypes, growth patterns; Biochemistry and secondary metabolites- intracellular and extracellular products; The fungal origin of the secondary metabolites; Major categories of lichen products; Application to pharmacology and medicine; Harmful properties of lichen substances, lichens in perfume, lichens in dyeing; Stress physiology and the symbiosis- stress tolerance, limits to stress tolerance; harmful effects of stress, constitutive and inducible stress tolerance, evolution of stress tolerance in lichens; Modes of water uptake, light, temperature, carbon dioxide; The carbon economy of lichens.

Unit-3: Nitrogen, its metabolism and potential contribution to ecosystems, Methods of determination of nitrogen fixation; Nutrients- chemical and physical properties of nutrients and metals; Nutrient requirements, sources of nutrients, accumulation mechanisms, compartmentalization of elements within lichens; Metal toxicity, metal tolerance; Environmental role of lichens- dispersal, establishment, pedogenesis and biodeterioration; Community structure, succession, ecosystem dynamics; Animal and lichen interactions; Forest management, conservation, environmental monitoring; Lichen sensitivity to air pollution- lichens in relation to sulfur dioxide, oxidants and lichens, hydrogen fluoride and organopollutants.

Unit-IV: Mycorrhizal fungi: Introduction and classification; Types of mycorrhizas- Arbutoid mycorrhizas, ectomycorrhizas, vesicular arbuscular mycorrhizas or arbuscular mycorrhizas, ectendomycorrhizas, ericoid mycorrhizas, monotropoid mycorrhizas and orchid mycorrhizas; Phoshate solubilisation; Ecological significance of AM fungi; Importance of mycorrhiza in evolution of land plants; Role of mycorrhiza in agriculture, horticulture and forestry.

Practicals-32 Hrs

- 1-3) Survey of lichen vegetation in the study area: Frequency, density and abundance.
- 4) Determination of species richness and species diversity.
- 5) Isolation and maintenance of cyanobionts and phycobionts
- 6) Isolation and maintenance of mycobionts

- 7) Analysis of secondary metabolites of lichens.
- 8) Biological activity of secondary metabolites of the lichens.
- 9) Culture methods for lichens and lichen symbionts.
- 10) Root clearing and staining technique to study arbuscular mycorrhizal fungi.
- 11) Assessment of % root colonization of arbuscular mycorrhizal fungi.
- 12) Isolation and identification of arbuscular mycorrhizal fungi.

- 1) Thomas H. Nash, 2008. Lichen Biology, 3rd edn. Cambridge University Press, The Edinburgh Building, Cambridge CB2 8RU, UK
- 2) Awasthi D.D. 2000. Lichenology in Indian subcontinent: A supplement to "A hand book of lichens". Publisher: M/s Bishen Singh Mahendra Pal Singh, Dehra Dun.
- 3) Awasthi D. D. 2013). A hand book of lichens, Publisher: M/s Bishen Singh Mahendra Pal Singh, Dehra Dun.
- 4) Sally E. Smith and David J. Read (2008). Mycorrhizal Symbiosis. 3rd edn. Academic Press, New York.
- 5) Larry Peterson R., Hugues B. Massicotte, Lewis H. Melville, 2004. Mycorrhizas: Anatomy and Cell Biology, CAB International, UK.

BOTANY: I- SEMESTER - SOFT CORE 1.4 PHYTOPATHOLOGY

Theory-32 Hrs

Unit-1: Concept of plant disease, Economic aspects of plant diseases; Types of plant diseases- Infectious diseases and non-infectious diseases; Causative agents of plant diseases; Angiospermic parasites; Development of plant pathology; Plant pathology in practice- Plant Clinic and Plant Doctor Concept; Parasitism and pathogenicity; Disease triangle; Infections and colonization; Weapons of plant pathogens; Effect of pathogen on physiology of host plant (photosynthesis, translocation and transpiration, respiration, permeability, transcription and translation).

Unit-2: Defence mechanisms in Plants- Pre-existing structural and chemical defences, induced structural and biochemical defences; Plant disease epidemiology- Elements of an epidemic and development of epidemics; Plant Disease forecasting; Genes and Diseases, Gene for gene concept, non-host resistance; Types of plant resistance to pathogens (Horizontal and Vertical Resistance); 'R' Genes and 'avr' genes; Genetics of virulence in pathogens and resistance in host plants; Breeding for disease resistance.

.

Unit-3: Management of Plant Diseases: Exclusion, eradication, cross protection, direct protection, integrated disease management, chemical methods of plant disease control; Biotechnological approaches to plant disease management; Gene silencing and disease control; Mechanism of gene silencing and control of viral diseases; Engineered resistance to viral, bacterial, fungal and insect diseases of crop plants.

Unit-4:Study of diseases of crop plants: Potato Spindle Tuber Disease, Tobacco Mosaic Disease, Sandal Spike Disease, Bacterial blight of Paddy, Citrus Canker, Late Blight of Potato, Downy Mildew of Maize, Blight of Paddy, Angular leaf spot of Cotton, Tikka disease of ground nut, Rust of coffee, Grain and Head smut of Sorghum. Leaf blight of Paddy, Blast of Paddy, Powdery mildew of cucurbits, Wilt of Tomato, Phloem Necrosis of Coffee, Root Knot of Disease of Mulberry and Vegetables; Non-parasitic diseases of plants; Seed-borne diseases.

Practicals-32 Hrs

- 1) Isolation of bacterial, fungal, and nematode plant pathogens of crop plants.
- 2) Study of mineral deficiency diseases of Tomato and French bean.
- 3) Estimation of foliar infection by Stover's method.
- 4) Study of spore germination.
- 5) Estimation of total phenols in diseased and healthy plant tissues.
- 6) Mycoflora analysis by Standard Blotter Method SBM/agar plating method.
- 7)-9) Study of Tobacco mosaic, Bacterial blight; Downy mildew of Maize; Powdery mildew of cucurbits; Grain smut of sorghum; Leaf rust of Coffee; Root Knot of Mulberry. Bunchy top of banana, Grassy shoot of sugar cane, Little leaf of Brinjal; Potao Spindle Tuber Disease (PSTVd)
- 10) Study of effect of pathogens on seed germination and vigour index.
- 11) Study of effect of fungicide on seed-borne pathogens.
- 12) Study of Fungal bio-control agents.

- 1) Agrios, G. N. 2005. Plant Pathology 5th edn. Academic Press, San Diego.
- 2) Dickinson, M. 2003. Molecular Plant Pathology, Garland Publishing Inc, CT.
- 3) Ingram, D.S. and Robertson, N.F. 1999. Plant Diseases, Collins Publishers, London.

- 4) Johnston, A and Both, C. 1983. Plant Pathologists Pocket-book. 2nd edn. Commonwealth Mycological Institute, Oxford and IBH Pub. Co. Calcutta.
- 5) Lane, C.R., Beales P.A. and Hughes, K.J.D. 2012. Fungal Plant Pathogens, CABI Publishing, Wallingford.
- 6) Mehrotra, R. S., 2003. Plant Pathology, 2nd edn. Tata Mc. Graw Hill Pub. Co. Ltd., NewDelhi.
- 7) Rangaswamy, G. and Mahadevan, A. 2002. Diseases of crop plants in India, Prentice Hall of India Pvt.Ltd. New Delhi.
- 8) Schumann, G. L. and D'Arcy, C. J. 2012. Hungry Planet: Stories of Plant Diseases, APS Press, USA.
- 9) Singh, R. S., 2009. Plant Diseases. 9th edn. Oxford and IBH Pub.Co. New Delhi.
- 10) Vidhyasekaran, P. 2004. Encylopedia of Plant Pathology. Viva Books Pvt. Ltd. New Delhi.

BOTANY: II- SEMESTER- HARDCORE 2.1

REPRODUCTIVE BIOLOGY OF ANGIOSPERMS AND PLANT MORPHOGENESIS

Theory-32 Hrs

Unit-1: Reproductive Biology of Angiosperms: Historical overview; Contributions of

P. Maheshwari; BM Johri; BGL Swamy to the development of embryology in India; Microsporogenesis and Microgametogenesis- wall layers and functions; Tapetum- types, concept of male germ unit and its significance; Pollen morphological features; Unusual features-pollen development in Cyperaceae, pollen embryosac; Concept and scope of palynology.

Unit-2: Megasporogenesis and Megagametogenesis; Ovular structure and types; Development of monosporic, bisporic, tetrasporic and special types of embryo sacs; Ultra structure and nutrition of female gametophyte, concept of female germ unit and its significance; Fertilization- a general account, double fertilization, single fertilization, heterofertilization and polyspermy; Pollen recognition and rejection reactions - types, structures, methods to overcome incompatibility reactions; Endosperm- types, haustorial variations, ruminate and composite endosperm; Embryo- structure, development of monocot, dicot and grass embryo; Significance of embryonal suspensor; Experimental Embryology- scope and applications.

Unit-3: Plant Morphogenesis: Models of morphogenesis- comparison of plant v/s animal morphogenetic pathways: Embryo, *Arabidopsis thaliana*; Concepts- cell fate/ fate maps, gradients, stem cells in plants and their significance in development, polarity, symmetry, totipotency of cell types, pleuripotency, plasticity, differentiation, redifferentiation, dedifferentiation and regeneration in *Acetabularia* and *Arabidopsis thaliana*.

Unit-4: Plant Growth and Development: Types, shoot apical meristems, root meristems; control of cell division in meristems; Quiescent center and meresteme de attente; *Arabidopsis*- vascular patterning and leaf development, abnormal growth; Cellular basis of growth- maintenance of cell shape; Cytoskeletal elements; Photomorphogenesis- definition, history, Hartmann's technique; Photoreceptors and photo morphogenesis, localization and properties; Effect of blue light-mediated photomorphogenesis with suitable examples.

Practicals-32 Hrs

Reproductive Biology of Angiosperms:

- 1) Study of microsporangium- slides: wall layers, tapetal types, two-celled and three-celled pollen; pollen tetrads.
- 2) Study of pollen germination: Balsam, Delonix, Hibiscus and Peltaphorum
- 3) Study of megasporangium-slides: female gametophyte development in *Penstemon, Xyris pauciflora*, 2, 4, 8-nucleate stages, mature embryo sac.
- 4) Endosperm mounting- Cucumis sativus, Grevellia robusta and Croton sparsiflorus
- 5) Embryo: Slides-monocot, dicot and grass embryo.
- 6) Embryo mounting: Crotalaria.

Plant Morphogenesis:

- 7) Study of stem cells in plants: SAM, RM.
- 8) Regeneration abilities of shoot apical meristems of dicots on media with combinations of growth regulators.
- 9) Study of totipotency in cell types: stomata, epidermal cells, stem and leaf explants on a tissue culture media.
- 10) Polarity in stem cuttings: *Pothos* spp.
- 11) Study of regeneration in succulents Kalanchoe, Byrophyllum.

- 12) Study of leaf galls of plants: *Pongamia pinnata and Achyranthes aspera*: Morphological observations and histology.
- 13) Study of Arabidopsis thaliana as a model plant.

References:

- 1) Johri, B. M. 1984. The embryology of Angiosperms. Springer Verlag.
- 2) Johri, B. M. 1982. The experimental embryology of vascular plants. Springer Verlag, New York.
- 3) Swamy, B.G.L. & Krishnamurthy, K. V. 1982. From flower to fruit: The embryology of angiosperms. Tata McGraw Hill Co. New Delhi.
- 4) Eames, 1961. Morphology of Angiosperms. McGraw Hill book Co., Inc., New York.
- 5) Maheshwari, P. 1950. An introduction to the embryology of Angiosperms. McGraw Hill book Co., Inc., New York.
- 6) Maheshwari, P. 1963. Recent advances in the embryology of angiosperms. ed. New Delhi
- 7) Bhojwani, S. S.and Bhatnagar, S. P. 1978. The embryology of Angiosperms. Vikas Publishing House, New Delhi.
- 8) Turing, A. M. 1952. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B. 237: 37-72.
- 9) Sinnot, E. W. 1960. Plant Morphogenesis. Mc Graw- Hill Book Co. Inc. New York, USA.
- 10) Steeves, T.A. and Sussex, I. M. 1989. Patterns in Plant development. 2nd edn. Cambridge University Press. UK.

Chasan, R. 1994. Tracing tracheary element development. The Plant Cell 6:917-919.

- 11) Lyndon, R. F. 1990. Plant Development: The Cellular basis. Unwin Hyman, London.
- 12) Aloni, R. 1987. Differentiation of vascular tissues. Annu. Rev. Plant Physiol. 38:179-219.
- 13) Raman, A. 2007. Insect induced plant galls of India; unresolved questions. Curr. Sci. 92 (6): 748-757.
- 14) Smith, H. 1975. Phytochrome and Photomorphogenesis- an introduction to the photocontrol of plant development. Mc Graw- Hill Book Co. (UK), Ltd.
- 15) Mohr, H. 1972. Lectures in photomorphogenesis. Springler- Vohrleg, Berlin, Germany.

BOTANY: II- SEMESTER - HARD CORE 2.2 CELL BIOLOGY AND GENETICS

Theory-32 Hrs

Unit-1: Bio Molecules and Membranes: Structure, composition of bio-molecules and their stabilizing interactions (carbohydrates, lipids, proteins and nucleic acids); Unit membrane structure and functions; Membrane proteins, membrane transport and the electrical properties; Intra-cellular compartments and protein sorting; Intracellular membrane traffic; Cytoskeletons.

Unit-2: Functions of Organelles: Cell wall, membranes, nucleus, mitochondria, Golgi bodies, lysosomes, spherosomes, peroxisomes, ribosomes, endoplasmic reticulum, Plastids, chloroplast, vacuoles and cytoskeleton; Cell cycle and mechanism of cell cycle regulations; A brief account of cell signalling, receptors, second messengers; General mechanism of signal transduction pathway; Programmed cell death in life cycles of plants.

Unit-3: Extensions of Mendelian Principles co-dominance, incomplete dominance, gene interactions, multiple alleles, lethal alleles, pleiotropy, penetrance and expressivity, polygenic inheritance, linkage and crossing over, sex linked inheritance, sex limited and influenced traits, genome imprinting, extra nuclear inheritance; Concept of the gene-classical-alleles, multiple alleles, pseudo-alleles, complementation test, experiments on rll locus and lozenge locus, modern- jumping genes, overlapping and genes within genes, split genes, nested genes, fusion genes; Gene mapping methods- linkage maps, tetrad analysis; Recombination in bacteria mapping genes in bacteria by interrupted mating technique, fine structure mapping, transduction and transformation mapping, mapping genes in Bacteriophages,

Unit-4: Sex Determination and Dosage Compensation: Chromosomal and genetic basis of sex determination; Mechanism of sex determination in *Melandrium*, *C. elegans*, Drosophila and humans, dosage compensation mechanisms in humans, Drosophila and *C. elegans*. **Transposable elements**- discovery in maize and bacteria, transposal elements in bacteria and bacteriophage, types and functions; Transposable elements in eukaryotes- Plants, *Drosophila* and Humans, mechanisms of transpositions; Transposable elements in research.

Practicals-32 Hrs

- 1) Determination of reducing sugars by Nelson-Somogyim's method.
- 2) Estimation of total soluble sugars by volumetric method.
- 3) Quantitative determination of free Amino acid content in germinating seeds.
- 4) Estimation of ascorbic acid in plant tissues.
- 5) Estimation of Phospholipids by TLC.
- 6) Slides/Charts/photos NP (Cytology Genetics and Embryology).
- 7) Study of mitosis in normal and induced root tips cells of Onion.
- 8) Study of meiosis in onion flower buds, translocation in Rhoeo.
- 9) Study of special chromosomes- B chromosomes, and sex chromosomes.
- 10) Determination of chiasma frequency in onion.
- 11) -12)To solve genetic problems on linkage, ordered and unordered tetrads.

- 1) Atherly, A.G. Girton, J.R. Donald, J.R. 1999. The Science of Genetics. Saunders College Publishers. Fortworth.
- 2) Griffith, A.J.F. Gelbart, W.M. Muller, J.H. and Lewintin, R.C. 1999. Modern Genetic Analysis. W.H. Freeman and Co. New York.

- 3) Hartl. D. 1991. Basic Genetics. 2edn., Jones and Barlett Publishers Inc. Boston.
- 4) Fairbanks, D.J. and Anderson, W.R. 1999. Genetics the continuity of Life. Brooks's/Cole publishing Company, California.
- 5) Brooker. R.J. 1999. Genetics –analysis and principles. Addison Wesley Longman Inc.California.
- 6) Snustad, D.P., Simmons, M.J. and Jenkins, J.R. 1997. Principles of Genetics. Hohn Wiley & son's inc. New York.
- 7) Brown, T.A. 1989. Genetics a molecular approach. Van Nostrand Reinhold (intn) Co., Ltd. London.
- 8) Winchester, A.M. 1969. Genetics. 3rd edn. Oxford and IBH, New Delhi.
- 9) Strickberger, Monroe W. 2000. Evolution. 3rd Edn. Jones & Bartlett Publishers, Inc. 40 Tall PineDrive Sudbury, MA 01776, USA.
- 10) Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Rafi, Keith Roberts, and Peter Walter. 2008. Molecular biology of the cell, 5th ed., Garland science, Taylor & Francis Group, LLC, 270 Madison Avenue, NewYork NY f 0016, USA.
- 11) Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J.D. 1999. Molecular biology of the cell. Garland Publishing, Inc., New York.
- 12) Kleinsmith, L.J. and Kish, V.M. 1995 .Principles of Cell and Molecular Biology 2nd edn. Harper Collins College Publishers, New York, USA.
- 13) Lodish, H. Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D. and Darnell, J. 2000. Molecular Cell Biology, 4th edn.W.H. Freeman and Co. New York, USA.
- 14) Buchanan, B.B. W.Gruissem and Jones, R.L. (2000). Biochemistry and Molecular Biology of Plants. ed. ASPP Press.USA.

BOTANY: II SEMESTER HARD CORE 2.3 PLANT BREEDING AND EVOLUTIONARY BIOLOGY

Theory-32 Hrs

Unit-1: Introduction: Objective and role of plant breeding; Evolution of plant breeding, scope of plant breeding, sciences related to plant breeding, Vavilov's concept of origin of centers of origin of crop plants; Recent trends in plant breeding; **Breeding Methods-**plant introduction and acclimatization, domestication and agriculture, pure line, clonal, mass and progeny selections, recurrent selection, pedigree, bulk and back cross methods; Heterosis breeding synthetic and composite varieties; **Breeding Techniques-**Mutation breeding, polyploidy, hybridization, tissue culture techniques in crop improvement, protoplast fusion, electrophoration, electro-fusion, biolistics, somatic hybridization, transgenic plants (GMO's); The role of Gene technology in plant breeding.

Unit-2: Breeding for Specific Purposes: Breeding for disease resistance, insect resistance, drought and salinity, quality trait, multiple cropping systems, ideotype breeding, breeding for Adaptation; **Crop breeding and seed production**- Breeding field crops, seed production techniques, release of new varieties, intellectual property rights, computer application in plant breeding, crop breeding Institutes/Centers; Genetic resources and germplasm conservation; Scientific Plant breeding; Green revolution; The elite crop (Golden rice); Contributions of **Dr.**

M.S. Swaminathan, Dr. Norman E. Borlaug and N.I. Vavilov.

Unit-3: Nature of Evolution: The origin, theories of evolution of life, earth and the universe,; Conditions of the early earth, emergence of the first living cell, origin of prokaryotic and eukaryotic cells, life in the Palaeozoic, Mesozoic and Coenozoic era. **Development of Evolutionary thoughts;** Ecological context, before Darwin, Darwinism, Darwin's evolutionary theory, Neo – Darwinism, modern synthesis: **Fossil evidence of Ancient life,** fossilization,; Interpreting geological time scale and fossil records; Evidences from comparative, morphology, patterns of development, comparative physiology and biochemistry, biogeography, palaeontology, taxonomy, anatomy and embryology, plant and animal breeding; Evidence from changing earth and sea; Extinctions; Evolutionary ecology.

Unit-4: Natural Selection : Types of natural selection, selective forces, selection models, sexual selection, selection and non adaptive characters, Adaptive radiation, artificial selection, **Variation-** gene flow, genetic drift, gene mutation - Mendelian concept, chromosomal mutation, architectural changes in chromosomes; The Hardy – Weinberg law, polyploidy in plant evolution; Speciation and origin of higher categories -Types of speciation, models of speciation, pattern of speciation, isolating mechanism and species formation, signification of speciation; Molecular evolution.

Practicals-32 Hrs

- (1) Study of floral biology of crops typical examples of self and cross pollinated plants.
- (2) Selfing and hybridization techniques Bagging and emasculation.
- (3) Pollen viability: germination test and TTC test.
- (4) Studying of centre's of origin of cultivated crops N.I. Vavilov Concept.
- (5) Mode of pollination study in different crops.
- (6) Identification of crop breeding institutes/ centers and logos.
- (7) Studying and identification of contributors of plant breeding M.S. Swaminathan, N.I. Vavilov, Norman . E. Borlaug .
- (8) Study of contributions of scientists to evolutionary biology.
- (9)-12) Study of models and photographs related to evolution.

- 1) Atherly, A.G. Girton, J.R. Donald, J.R. 1999. The Science of Genetics. Saunders College
- 2) Publishers. Fortworth.
- 3) Griffith, A.J.F., Gelbart, W.M. Muller, J.H. and Lewintin, R.C. 1999. Modern Genetic analysis. W.H. Freeman and co. New York.
- 4) Hartl. D. 1991. Basic Genetics. II edn. Jones and Barlett Publishers Inc. Boston.
- 5) Fairbanks, D.J. and W.R. Anderson. 1999. Genetics the continuity of life. Brooks's/Cole publishing company. California.
- 6) Brooker, R.J. 1999. Genetics –analysis and principles. Addison Wesley Longman Inc. California.
- 7) Snustad, D.P., Simmons, M.J. and Jenkins, J.R. 1997. Principles of Genetics. Hohn Wiley & son's inc. New York.
- 8) Brown, T.A.1989. Genetics a molecular approach. Van Nostrand Reinhold (intn) Co., Ltd. London.
- 10) Winchester, A.M. 1969. Genetics. III edn. Oxford and IBH, New Delhi.
- 11) Strickberger, Monroe W. 2000. Evolution. 3rd Ed., Jones & Bartlett Publishers, Inc. 40 Tall PineDrive Sudbury, MA 01776, United States of America
- 12) Futuyma, Douglas J. 2005. Evolution. Sinauer Associates, Inc., 23 Plumtree Road, Sunderland, MA 01375, United States of America
- 13) Dodson E. O. and Dodson P. 1976. Evolution: Process and Product. 2nd Ed., D. Van Nostrand Company, 450 West 33rd Street, New York, N.Y. 10001
- 14) Chopra, V.L. 2000. Plant Breeding- theory and practices. Oxford and IBH Publishing Co. Pvt. Ltd., Oxford.
- 15) Chahal, G.S. and Gosal, S.S. 2002. Principles and procedures of Plant Breeding. Narosa Publishing House, New Delhi.

BOTANY: II- SEMESTER - SOFT CORE 2.1 PLANT ANATOMY AND HISTO-CHEMISTRY

Theory-32 Hrs

Unit-1: Plant Anatomy: Primary vegetative body of the plant; Anatomical features of leaf, stem and root (dicot and monocot); leaf of fern and gymnosperm; Structure of modified leaves- Kranz anatomy and C4 photosynthesis; Ultra-structure and chemistry of the cell wall; formation of the cell wall and its uses.

Unit-2: Anatomy of Vascular Tissue: Ultra structure and differentiation of xylem and phloem tissues; Apical meristems- shoot apex in Pteridophytes, Gymnosperms and Angiosperms, theories, root apical meristems.

Unit -3: Secondary Growth: Vascular cambium, secondary xylem of gymnosperms and dicots and secondary phloem of Gymnosperms and dicots; Periderm and bark; Anomalous secondary growth in monocots and climbers; Leaf ontogeny - Dicot- simple, compound, Monocot; Floral anatomy-flower parts, floral meristem, vascular system.

Unit-4: Plant Histochemistry: Tests for minerals, carbohydrates, lignins, polyphenols, proteins, lipids and nucleic acids; Study of instruments: (a) Camera lucida (b) Micrometry (c) Microtome. Principles of histo-chemical stains; Killing, fixing and staining of plant tissues; Double staining-TBA method.

Practicals-32 Hrs

- 1) Staining of xylem and phloem elements.
- 2) Study of anatomy of roots in: Ficus, Musa, Dieffenbachia, Vanda.
- 3) Study of anamalous secondary growth in the following examples: Stem of *Aristolochia*, *Nyctanthes*, *Pyrostegia*, *Peperomia*, *Tinospora*, *Achyranthes*.
- 4) Study of Ecological anatomy.
- 5) Study of Vasculature in floral organs.
- 6) Studying double staining technique.
- 7-11) Embedding: TBA method, embedding for electron microscope, Sectioning, Microtomes, whole mounts maceration.
- 12) Histochemical- PAS Test, Sudan black- lipids, Feulgen reaction Nucleic acids.

- 1) Abraham, F. 1982. Plant Anatomy. 3rd edn. Pergaon Press. Oxford.
- 2) Cariquist, S. 1967. Comparative Plant Anatomy-Holt Reinert and Winston, New York.
- 3) Cutter, D. G. 1971. Plant Anatomy- Part 1, Cell and Tissues Edward Arnold London.
- 4) Cutter, D. G, 1971. Plant Anatomy- Part 1, Cell and Tissues Edward Arnold London. Part- II.
- 5) Eames and McDaniel, 1947. Plant Anatomy. 2nd edn., McGraw Hill, New York.
- 6) Esau, K. 1965, Plant Anatomy, Joh Wiley and Sons, New York.
- 7) James, D. Mauseth, 1998. Plant anatomy The Benzamin/ Cummins Publishing Co.Inc.
- 8) Esau, K. 1979, Anatomy of seed plants-first Wiley eastern reprint. New Delhi.
- 9) Krishnamurthy, K. V. 1988. Methods in Plant Histochemistry. S. Viswanathan (Printers and Publishers) Pvt. Ltd. Madras.

BOTANY: II- SEMESTER - SOFT CORE 2.2 ETHNO-BOTANY AND INTELLECTUAL PROPERTY RIGHTS (IPR)

Theory - 32 Hrs

Unit-1: Ethno-botany: Introduction, concept, scope and objectives; Ethno-botany as an interdisciplinary science; The relevance of ethno-botany in the present context; Ethnic groups; Ethno-botany- Major and minor ethnic groups of India and their life styles; Forest Vs. ethnic groups; Plants in tribal life with reference to Magico-religious rituals and social customs; Sacred groves.

Unit-2: Methodology used in the study of Ethnobotany and Ethno pharmacology: Field work, Herbarium, Ancient Literature, Archaeological findings, temples and sacred places, protocols. Preliminary phyto-chemical analysis of ethno-botanical important medicinal plants.

Unit-3: Role of ethno-botany in modern Medicine with special examples; Medico-ethno-botanical Sources in India with special reference to Karnataka; Tribals Vs. Agriculture: Shifting, Podu and Jhum cultivation; Role of ethnic groups on surrounding environment; Crop genetic sources; Endangered taxa and forest management (participatory forest management); Ethno- botany as a tool to protect interests of ethnic groups; Sharing of wealth concept with few examples from India.

Unit-4: Study of Intellectual Property Rights – patents, trademark, geographical indication, copyright; IPR and Traditional Knowledge; Bio-piracy of traditional knowledge; Ethno botany and legal aspects; National and international organizations and treaty related to traditional knowledge – WIPO, TKDL, TRIPS, CBD, Nagoya protocol etc., Ethno botany as a source (recent) of already known drugs: a) *Withania* as an antioxidant and relaxant b) *Sarpagandha* in brain ailments c) *Becopa* and *Centella* in epilepsy and memory development in children d) *Phyllanthus fraternus* in diabetic and viral jaundice e) *Artemisia* as a powerful cerebral anti malarial agent and its possible use in tuberculosis.

Practicals-32 Hrs

- 1) Survey and collection important ethno botanical plants by using questionnaire and interview.
- 2) Preliminary phyto- chemical analysis of medicinal plants.
- 3) Study of biological functional properties of crude drugs Anti microbial activity.
- 4) Study of methods of *in-situ* or *ex-situ* conservation of important medicinal plants.
- 5) Study of techniques used in Pharmacognosy organoleptic, anatomy and chemical methods.
- 6) A visit to a Tribal area to conduct field work and collect ethno botanical information / data.
- 7) Listing of Crude drugs in Pansali shops (local crude drugs shops) and their identification (little known drugs only).
- 8) -12) Visit to nearby Western Ghats and Sacred Groves.

- 1) Jain, S.K. 1995. Manual of Ethno-botany, Scientific Publishers, Jodhpur.
- 2) Jain, S.K. 1981. Glimpses of Indian. Ethno-botany, Oxford and I B H, New Delhi
- 3) S.K. Jain 1989. Methods and approaches in ethno-botany. (ed.) Society of ethno botanists, Lucknow, India.
- 4) Jain, S.K. 1990. Contributions of Indian ethno-botany. Scientific Publishers, Jodhpur.

- 5) Colton C.M. 1997. Ethno botany Principles and applications. John Wiley and sons –
- 6) Rama Ro, N and A.N. Henry (1996). The Ethno-botany of Eastern Ghats in Andhra Pradesh, India. Botanical Survey of India. Howrah.
- 7) Rajiv K. Sinha Ethno-botany The Renaissance of Traditional Herbal Medicine INA SHREE Publishers, Jaipur-1996
- 8) Faulks, P.J. 1958. An introduction to Ethno-botany, Moredale pub. Ltd. London

BOTANY: II- SEMESTER - SOFT CORE 2.3 ECONOMIC BOTANY

Theory -32 Hrs

Unit- 1: Economic Botany: The origin of cultivated plants and Agriculture; The future role of plants in relation to mankind; Introduction to Green revolution; Study of origin, distribution, cultivation and utility of the useful parts of the following- - rice, wheat, maize, barley, sorghum and millets; Red gram, green gram, black gram, horse gram, pea, cow pea, bengal gram; Oil Yielding plants- sunflower, safflower, groundnut, linseed, rape seed; A brief account of economically important horticultural and floricultural plants.

Unit- 2: Economic Botany: Study and utility of the useful parts of the following- Sugar yielding plants- sugar cane and sweet potato, sugar beet and *Stevia*; Spices and condiments - ginger, turmeric, cardamom, cinnamon, clove, saffron, all spice, black pepper, nutmeg, red pepper, coriander, cumin, fennel and *Vanilla*.

Unit -3: Economic Botany Study and utility of the useful parts of the following- fibre- cotton, jute, flax, hemp, Sunn hemp, China grass, coconut and Kapok; Timber yielding plants- *Tectona* and *Dalbergia*; Dyes- indigo, henna; Masticatories and fumitories-areca nut, betel leaf, tobacco; rubber- Para rubber and other substitutes; Gums- Gum Arabic, Karaya gum.

Unit-4: Medicinal Botany: Scope and importance of medicinal plants; Indigenous medicinal Sciences; Important medicinal plants and their uses; Major exporters and importers of traditional medicinal plants and plant products; Application of natural products to certain diseases- jaundice, cardiac, infertility, diabetics, blood pressure and skin diseases; Poisonous plants.

Practicals-32 Hrs

- 1) Utility, uses and economic importance of cereals and millets.
- 2) Utility, uses and economic importance of horticultural and floricultural plants
- 3) Utility, uses and economic importance of pulses and oil yielding crops.
- 4) Utility, uses and economic importance of sugar yielding crops.
- 5) Utility, uses and economic importance of spice and condiments.
- 6) Utility, uses and economic importance of fiber and timber yielding plants.
- 7) Utility, uses and economic importance of dye, rubber and gum yielding plants
- 8) Utility, uses and economic importance of masticatories and fumitories
- 9) -12) Study of medicinal and poisonous plants.

- 1) Hill, A.F. 1952. Economic Botany, TataMcGraw Hill, New Delhi.
- 2) Kochhar, S.L. 1998. Economic Botany of Tropics, Macmillan India Publishers, New Delhi.
- 4) Pandey, B.P. 2000. Economic Botany. S. Chand & Company, New Delhi.
- 5) Pandey, S.N. and Chandha, A. 1999. Economic Botany. Vikas Publishing House Pvt. Ltd. New Delhi.

BOTANY: III- SEMESTER - HARD CORE 3.1 BIOCHEMISTRY AND PLANT PHYSIOLOGY

Theory -32 Hrs

Unit-1: Biochemistry- Brief account of plant structural and functional molecules-carbohydrates, proteins, lipids and nucleic acids; classification, structural and functional properties of bio molecules; Biochemistry of cell membranes; **Lipids-**building and storage molecules, classification and significance; **Proteins-** classification, structure- primary, secondary, tertiary and quaternary structure; properties of proteins; **Enzymes-**Nomenclature, nature and properties of enzymes, active sites, co-enzymes, kinetics of enzyme action, catalysis, specificity and inhibition, allosteric enzymes, ribozyme and abzyme.

Unit-2:Solute transport: Transport of solutes across the membranes Transmembrane proteins, Transport of ions, solutes and macro-molecules, Mechanism of translocations in phloem; Role played in signal transduction pathway stomatal physiology; **Phytosynthesis in higher plants** (i) Photophosphorylation - Calvin cycle; **Photorespiration** - C4 – Pathway, CAM in plants; Oxidative Phosphorylations; Glycolysis -TCA – Cycle and terminal oxidation.

Unit-3: Plant Hormones- plant hormones-discovery, biosynthesis, metabolism, transport and physiological effects of plant hormones and their applications; **Nitrogen metabolism** -(i) Molecular mechanism of N2 fixation (ii) Biosynthesis of amino acids (iii) Assimilation of nitrate and ammonium; **Lipid metabolism-** fats and oils biosynthesis and oxidation of lipids; Physiology of seed germination and flowering.

Unit -4: Stress Physiology: Water deficit and its physiological consequences; Drought tolerance mechanisms, Salinity stress and plant responses. Heat stress and heat shock proteins; Metal toxicity in plants. Biotic stress, HR and SAR mechanisms; **Mineral nutrition**in plants and deficiency diseases; **Plant development-** physiology of flowering; **Phytochrome-** photochemical and biochemical properties of phytochrome; Concept of photoperiodism and vernalization and its influence on flowering;

Practicals-32 Hrs

- 1) Estimation of protein by Lowry's method
- 2) Determination of water potential of tissue by plasmolytic method
- 3) Determination of water potential by Gravimetric method
- 4) Quantitative estimation of chlorophyll a, chlorophyll b and total chlorophyll in plant tissue
- 5) Determination of diurnal fluctuation of acid content of CAM plants (TAN)
- 6) Determination of temperature quotient (Q10) of water uptake
- 7) Separation of chlorophyll pigments/Anthocyanin by TLC
- 8) Protein analysis by SDS PAGE method.
- 9) Estimation of Alpha-amylase activity in germinating seedling.
- 10) Silver staining of proteins.
- 11-12) Visit to Molecular Biology Laboratories.

- 1) Barkla, B.J., and Pantajo, O. 1996. Physiology of ion transport across the tonoplast of higher plants. Ann. Rev. Plant Physiol. 47: 159-184.
- 2) Clayton, R.K. 1980. Photosynthesis: Physical mechanisms and chemical patterns. Cambridge Uni. Press, Cambridge.
- 3) Cohn, E.E., and Stumf, P.K. 1992. Outlines of Biochemistry. Wiley Eastern Pvt. Ltd.
- 4) Kozaki, A., and Takeba, G. 1996. Photorespiration protects C3 plants from

- photooxidation. Nature 384: 557-560.
- 5) Taiz, L., and Zeiger, E. 1998. Plant Physiology. Sinaur Associates Inc. Publishers, Sunderland Massachusetts.
- 6) Mukherji, S., and GHosh, A.K. 1996. Plant Physiology. New Central Book Agency Pvt. Ltd. Kolkatta, India.
- 7) Rabinowithc, E., and Jee, G. 1969. Photosynthesis. Willey Press, New York.
- 8) Rudier, W., and Thummlar, K. 1994. The Phytochrome, Chromophore I. Photomorphogenesis in Plants, II Edition, Netherlands, 51-69.
- 9) Spanswick, R.M. 1981. Electrogenic ion pumps. Ann. Rev. Plant Physiol. 32: 267-289.
- 10) Mc Elroy, W.D. 1995. Cell Physiology and Biochemistry. Prantice Hall of India.
- 11) Walsh, C.T. 1979. Enzymatic reaction mechanisms. Editors: W.H. Freeman, New York.
- 12) Webb, E. 1984. Enzyme nomenclature. Academic Press, Orlando Fla.
- 13) Zimmermann, M.H., and Milburn, J.A. Transport in Plants. 1. Phloem transport (Encyclopedia of Plant Physiology. New Series Vol. 1), Springer, New York
- 14) Devline and Witham, 1986. Plant Physiology. CBS Publs. and Distributors, New Delhi.
- 15) Hopkins, W.G. 1995. Introduction to Plant Physiology, John Wiley & Sons. Inc., NewYork, USA.
- 16) Moore, T.C. 1989. Biochemistry and Physiology of Plant Hormones. Springer Verlag, New York, USA.
- 17) Singhal *et al.* 1999. Concepts in Photobiology, Photosynthesis and Phytomorphognesis, Narosa Pub. House, New Delhi.

BOTANY: III- SEMESTER - HARD CORE 3.2 MOLECULAR BIOLOGY

Theory-32 Hrs

Unit-1: Organization of chromosomes and genes in prokaryotes and eukaryotes - Operon, interrupted genes, gene families, unique and repetitive DNA, heterochromatin, euchromatin, transposons, mitochondrial and chloroplast genome organization, Transposable elements in prokaryotes and eukaryotes, genetic and evolutionary significance, **DNA replication**- patterns, Messelson and Stahl's and Taylor's experiment, enzymes of replication, mechanism of DNA replication in prokaryotes and Eukaryotes, proof reading and error correction mechanisms.

Unit-2: Molecular mechanism of mutation, repair and recombination: Mutation-DNA damage by spontaneous mutations, physical and chemical mutagens and their molecular mechanisms, **Repair mechanisms-** direct reversal of damage, base and excision repair, recombinational repair, SOS repair, translation repair synthesis, transcription coupled repair, **Recombination**- homologous recombination, models of recombination, mechanisms, protein machinery of homologous recombination, genetic consequence of homologous recombination, gene conversion, site specific recombination, mechanism and biological significance, non homologous recombination- transposition, molecular mechanisms of transposition- conservative, replicative and retro-transposition.

Unit-3: RNA synthesis, processing and translation: transcription activators and repressors, promoters, RNA polymerases and transcription factors, mechanism of transcription in prokaryotes and eukaryotes, **RNA processing**- capping, polyadenylation, splicing, alternative splicing, RNA editing, exon shuffling and RNA transport, **Translation and processing**-ribosomes, tRNA aminoacylation, aminoacyl tRNA synthetase, genetic code, wobble hypothesis, deciphering of the code, translation mechanism, translation proof reading, translation inhibitors and post translational modifications.

Unit-4: Regulation of gene expression in Prokaryotes: Operon concept, regulation at transcription initiation- lac and trp operon control, regulation of lytic and lysogenic cycles in lambda phage, regulation beyond transcription initiation-premature termination- trp operon, ribosomal proteins as translational repressors, riboswitches, **Regulation of gene expression in eukaryotes**-transcription activators and repressors, regulation after transcription initiation- alternative splicing, translational control in ferretin and tranferrin mRNA, RNA interference, role of chromatin in regulation of gene expression and gene silencing.

Practicals-32 Hrs

- 1) Isolation of DNA from CTAB method.
- 2) Isolation of DNA from Onion.
- 3) Isolation of DNA from mulberry leaves.
- 4) Estimation of DNA by DPA method.
- 5) Extraction of RNA by trizol/phenol-chloroform methods.
- 6) Estimation of proteins by Biuret method.
- 7) Estimation of protein by Bradford method.
- 8) Determination of Tm value of DNA.
- 9-12) Photo graphs/ charts related to molecular biology/Molecular Biologists.

References:

1) Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Rafi, Keith Roberts, and Peter

- Walter. 2008. Molecular biology of the cell, 5th edn., Garland science, Taylor & Francis Group, LLC, 270 Madison Avenue, NewYork, USA.
- 2) Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K and Watson, J.D. 1999. Molecular biology of the cell. Garland Publishing, Inc., New York
- 3) Kleinsmith, L.J. and Kish, V.M. 1995 .Principles of Cell and Molecular Biology 2nd Edition Harper Collins College Publishers, New York, USA.
- 4) Lodish, H. Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D. and Darnell, J. 2000. Molecular Cell Biology 4th Edition. W.H. Freeman and Co. New York, USA
- 5) Malaciniski, G.M. and Freidfelder, D. 1998. Essentials of Molecular Biology 3rd Edition. Jones and Bartlet Publishers, Inc., London.
- 6) Gunning.B.E.S. and Steer, M.W.1996. Plant Cell Biology; Structure and Function. Jones and Bartlett Publishers, Boston, Massachusetts.
- 7) Harris, Nand Oparka, K.J. 1994. Plant Cell Biology A Practical Approach. IRL Press, Oxford University Press, U.K.
- 8) F.M. Ausubel, R.Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, K. Struhl, (Current Edition) (2005). Current Protocols in Molecular Biology.
- 9) B.B. Buchanan, W.Gruissem and R.L. Jones . USA (2000) .Biochemistry and Molecular Biology of Plants. Ed. ASPP Press.
- $10)\,\,$ T.A. Brown, 2000. Essential of Molecular Biology, Vol-I & 2 Oxford University Press.
- 11) James D. Watson, Tania,. A. Baker, Stephen, P. Bell, Alexander, Gannm, Michael Levine. 2004. Molecular Biology of the gene. 5th Edition, Pearson Education. Philip M Gilmartin and Chris.
- 12) Bowle.2002. Molecular Biology of Plants. Vol 1 & 2 Oxford University Press.

BOTANY: III-SEMESTER - HARD CORE 3.3 PLANT BIOTECHNOLOGY

Theory-32 Hrs

Unit-1: Plant Tissue Culture: Scope and importance of plant tissue culture - Media composition and types, hormones and growth regulators, explants for organogenesis; Micro propagation, embryo and endosperm culture, somatic embryogenesis, variation and cell line selection, adrogenesis and microspore culture, significance of haploids, diploidization and bulbosum technique; Cryopreservation, germplasm collection; Somatic Hybrids- Isolation and protoplast culture and somatic hybridization and its significance, Synthetic seed production and somaclonal variations.

Unit-2: Genetic Engineering: Milestones in plant recombinant DNA technology; Importance of gene manipulation in future perspectives; **Tools in Genetic Engineering**-Enzymes in genetic engineering - restriction endonucleases, types and their actions, other DNA modifying enzymes; Cloning vectors- plasmids isolation and purification - Ti Plasmid, pBR322, pUC-series. Phage vectors-M13 phage vectors, Cosmids -types, phasmids or phagemids, shuttle vectors-types; YAC and BAC vectors, Lambda phage vectors, Lamda phage DNA as a vectors; Cloning vectors and expression vectors; Vectors for plant cells; Vectors for animal cells, baculovirus vectors- adenoviruses, retroviruses, transposons as vectors, Synthetic construction of vectors.

Unit 3: Applications of Genetic Engineering for pest, disease and stress tolerance: The genetic manipulation of herbicide resistance with suitable examples; The genetic manipulation of pest and disease resistance with suitable examples; Transgenic approaches to viral and bacterial disease resistance. Engineering for stress tolerance and Metabolic Engineering of Plants; Future prospects for GM crops.

Unit 4: Biofertilizers: Preparation and applications of biofertilizers such as Rhizobium, Azotobacter, Blue Green Algae and VAM. Single Cell proteins (SCP): Health benefits and advantages of single cell proteins- *Spirulina*. Biofuels: Ethanol and Biofuel production from plants. Mushroom cultivation and its advantages. Bioremediation: Phytoremediation; Biodegradation, Xenobiotics. Biotechnology of medicinal and aromatic plants for human welfare.

- 1) Preparation of plant tissue culture media and types.
- 2) Organ culture (Shoot tip, nodal and leaf culture) for callus Initiation and regeneration.
- 3) Anther culture for the production of haploids.
- 4) Suspension culture and production, separation and estimation of secondary metabolites.
- 5) Encapsulation of somatic embryos and production of Synthetic seed.
- 6) Extraction of secondary metabolites using Soxhlet extractor and Identification of In vitro secondary metabolites-alkaloids, steroids and flavonoids.
- 7) Restriction digestion of plasmid and genomic DNA and gel electrophoresis.

- 8) Isolation of genomic DNA from bacteria/plants and purification by agarose gel electrophoresis.
- 9) Restriction analysis of plasmids, gel purification of DNA, small and large scale purification of plasmids.
- 10) Preparation of competent *E. coli* cells. Bacterial transformation and recovery of plasmid clones.
- 11) Gene cloning in plasmids, analysis of recombinant plasmids.
- 12) DNA amplification by PCR, RT-PCR, Real Time PCR.
- 13) Analysis of DNA and RNA and Protein by Southern, Northern and Western blotting.
- 14) Primer design for PCR.

- 1) Slater, N. Scott and M. Fowler. Plant Biotechnology 2003: The genetic manipulation of plants. Oxford University Press, Oxford.
- 2) Plant Biotechnology. 2000. J.H. Hammond, P. Mcgarvey, and V. Yusibov (eds). Springer Verlag, Heidelberg.
- 3) Text Book of Biotechnology. 2004. H.K. Das (ed). Wiley India Pvt. Ltd., New Delhi.
- 4) Plant Biotechnology -The Genetic Manipulation of Plants, Adrian Slater, Nigel Scott and Mark Flower, Oxford University Press, (2000).
- 5) Plant Genetic Transformation and Gene Expression by (eds) J.Draper *et.al.* Blackwell Scientific Publications, Oxford (1988).
- 6)Reinert, J. 1982. Plant Cell and Tissue Culture: A Laboratory Manual. Narosa Publishing House, New Delhi.
- 7) Chawla H.S., 2009, Plant Biotechnology. Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi.
- 8)Bhojwani, S.S. and Razdan, M.K. 2004. Plant Tissue Culture: Theory and practice. Elsevier Science Publishers, New York, USA.
- 9) PUROHIT S. D., 2012. Introduction To Plant Cell Tissue And Organ Culture PHI Learning Pvt. Ltd., New Delhi
- 10) Roberta, H. Smith, 2012. Plant Tissue Culture: Techniques and Experiments 3 edition. Academic Press; US.

BOTANY: III- SEMESTER- SOFT CORE 3.1 MOLECULAR GENETICS OF PLANTS

Theory-32 Hrs

Unit-1: Plants as genetic tools in Biology: Arabidopsis, Rice, Maize, Saccharomyces; Genome organization in plants; Arabidopsis thaliana- an experimental model for understanding plant development and functions; Plant genes and regulation; nucleus and chromatin organization; Histones and histone modifications; DNA packaging, organization and types of DNA sequences; functional and non- functional sequences, organization of plant nuclear genes, plastid genes and mitochondrial genes.

Unit-2: Genes responding to hormones, phytochrome, responses to abiotic stresses; Genes induced by water stress and freezing stress; Genes involved in photosynthesis and nitrogen fixation and their regulation; Molecular development of leaf and flower - ABC and revised model of flower development; Genes involved in fertilization, seed development, embryo development.

Unit-3: Genetics of *Agrobacterium:* Biology and genetics of *Agrobacterium tumefaciens;* The Ti- plasmid, *Vir* genes and expression, Mechanism of T-DNA transfer and integration; Basic features of vectors for plant transformation; Proteomics, genomics and bioinformatics; Structural and functional genomics, comparative genomics - biochemical, evolutionary, physiological and phylogenomics; Tools to study functional genomics.

Unit-4: Proteomics- functional and comparative proteomics; Protein distribution, characterization and identification, differential display proteomics, detection of functional linkages; Pharmacogenomics; Bioinformatics- tools of bioinformatics, data bases and data base management, bioinformatics in taxonomy, biodiversity, agriculture; Bioinformatics in drug design and drug discovery.

Practicals-32 Hrs

- 1) Arabidopsis thaliana- study of plant system and its biology.
- 2) Arabidopsis RNA extraction (total and polysomal) for Northern blotting.
- 3) Expression of foreign genes in plant cells through Agrobacterium tumefaciens (Chart)
- 4) Production of tobacco transgenic plants and assay for the introduced transgenic (Chart)
- 5) Co-cultivation of tobacco Agrobacterium tumefaciens
- 6) -12) Learning gene bank formats- EMBL format, FASTA format, Swiss- PROT, Ex PASy

- 1) Buchmann, B.B., Gruissem, W., and Jones, R.L. 2000. Biochemistry and Molecular Biology of Plants. ASPP Press, USA.
- 2) Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. 2005. Current protocols in molecular biology. Current Edition.
- 3) Brown, T.A. 2000. Essentials of Molecular Biology. Vol. I & II, Oxford University Press.
- 4) Potrykus, I., and Spangenberg, G. 1995. Gene transfer to plants. Springer, Berlin, Heidelberg.
- 5) Watson, J.D., and Baker, T.A., Bell, S.P. Gannm, A. and Levine, M. 2004. Molecular Biology of Genes. 5th edn., Pearson Education.
- 6) Gilmartin, P.M., and Bowler, C. 2002. Molecular Biology of Plants. Vol. I & II, Oxford University Press.
- 7) Karchar, S.J. 1995. Molecular Biology- A Project Approach, Academic Press, New York.
- 8) Sambrock, J., Fritch, E.F., and Maniatis, T. 1989. Molecular cloning- a laboratory manual.
- 9) Slater, A., Scott, N., and Flower, M. 2000. Plant Biotechnology- the Genetic Manipulation of Plants, Oxford University Press, Oxford.

- 10) Lea, P.J., and Leegood, R.C. 1999. Plant Biochemistry and Molecular Biology. John Willey and Sons Press, New York.
- 11) Draper, J. 1988. Plant Genetic Transformation and Gene Expression. Blackwell Scientific Publications, Oxford.
- 12) Old, R.W., and Primrose, S.B. 2004. Principles of Gene Manipulation. An introduction to Genetic Engineering. 5th Edition, Blackwell Science Publications.

BOTANY: IV- SEMESTER- SOFT CORE 3.2 MOLECULAR PLANT PATHOLOGY

Theory-32 Hrs

Unit-1: Concepts and scope of physiological and molecular plant pathology; Molecular approaches to plant disease diagnosis; Nucleic acid based probes for detection of plant pathogens including non-culturable organisms; **Pathogenicity and Disease Development**-factors; induced resistance, virulence and pathogenecity factors; Plant-pathogen interactions with emphasis on incompatible interactions and induced resistance.

Unit -2: Pathogenesis: Necrogenic plant pathogenic bacteria with emphasis on hrp and avr genes and virulence factors; Fungal plant pathogens with emphasis on virulence and pathogenicity factors; Plant viruses with emphasis on virus replication, virus transport in plants and control of plant viruses with transgenic plants; **Signal Transuduction-** recognition of the pathogen by the host, transmission of the alarm signal to the host defense providers; Necrotic defense reaction, defense through hypersensitive response; Molecular basis of induced biochemical reaction; Local and systemic acquired resistance (SAR).

Unit-3:Genetics of Plant Diseases and Resistance: Genes and diseases; physiological specialization among plant pathogens; Variability in viruses, bacteria and fungi; Levels of variability in pathogens and loss of virulence in plant pathogens; Genetics of virulence in pathogens and of resistance in host plants; Molecular plant breeding for disease resistance.

Unit-4: Genetics and molecular basis of host-pathogen interaction: Evolution of parasitism; genetics oh host-pathogen interaction; Gene for gene relationship; Criteria for gene for gene type relationship; Molecular basis of host pathogen interaction; Host-parasite-interaction. **Biotechnological methods of plant disease management;** Genetic engineering and crop protection; Cross protection; Gene silencing and disease control- mechanism of gene silencing and control of viral diseases; Engineered resistance to viral, bacterial, fungal and insect diseases of crop plants.

Practicals-32 Hrs

- 1-2) Testing hypersensitivity reaction on Nicotiana and Bajra.
- 3) Estimation of lypoxygenease in diseased and healthy plants.
- 4) Estimation of polyphenols in diseased and healthy plants. 5-7) Studying systemic acquired resistance in crop plants.
- 8) Genetic testing of disease resistance in plants.
- 9-11) Molecular detection of viruses, Mycoplasma, fungi and bacteria from infected plants.
- 12) In-vitro testing of pathogen virulence.

Visit to agricultural research station to study diseases on different crop plants.

- 1) Singh, R. S. (1973). Plant Disease. Oxford and IBH Pub.Co. New Delhi.
- 2) Agrios, G. N. (1994). Plant Pathology 2nd Edn. Academic Press NY.
- 3) Johnston A and Both, C. 1983-Plant Pathologists Pocket-book. 2nd Edn.
- Commonwealth Mycological Institute, Oxford and IBH Pub. Co. Calcutta.
- 5) Rangaswamy G and Mahadevan A 2002. Diseases of crop plants in India, Prentice Hall of India Pvt. Ltd. New Delhi.
- 6) Mehrotra, R. S.1983-Plant Pathology Tata Mc. Graw Hill Pub. Co. Ltd., New Delhi.
- 7) Vidhyasekaran, P. 2004. Encylopedia of Plant Pathology. Viva Books Pvt. Ltd. New Delhi.

BOTANY: III SEMESTER- SOFT CORE 3.3 PLANT PROPAGATION AND PLANT BREEDING

Theory-32 Hrs

Unit-1: **Plant Propagation**: History, scope and importance of plant propagation; Propagation structures with reference to green house equipment and media; Seed propagation and vegetative propagation; Propagation by cuttings; Biology and techniques of grafting; Techniques of budding; Layering and its natural modifications; Propagation by specialized stems and roots; Micro propagation — techniques and applications in forestry and horticulture; Limitations and applications of vegetative propagation; Propagation methods of some selected plants — Citrus, Grape, Mango, Mulberry, Hibiscus, Rose, Croton, Eucalyptus.

Unit-2: Plant Breeding: History of plant breeding, objectives of plant breeding, salient achievements of plant breeding; Centres of origin of crop plants, Exploration and collection of plant genetic resources, evaluation of germplasm collection, documentation, conservation of plant genetic resources, utilization of genetic resources; The theory of pure line selection – Genetic basis, sources of genetic variation in pure lines, the land variety (races); Mendelian experiments of plant hybridization; Quantitative Inheritance; Applications of biometrical genetics in plant breeding.

Unit-3: Plant Breeding: Types of plant breeding; Fertility regulating mechanisms - manual or mechanical control, genetic control, incompatibility, male sterility, genetic engineering for male sterility, chemical control, genetic basis of heterosis; Synthetic and composite varieties -genetic basis, procedure for developing synthetic and composite varieties - genetic basis, procedure for developing synthetic varieties; Breeding for resistance to disease and insect pests.

Unit - 4 :Mutation Breeding: Significance of induced mutations in plant breeding; Polyploidy in plant breeding- types of polyploids, induction of polyploidy, phenotypic effects of polyploidy, significance of polyploids; Tissue culture in crop improvement; Molecular approaches to crop improvement- probes, gel electrophoration, electrofusion, biolistics, gene cloning, transgenic plants (GMO's), molecular markers, construction of genetic maps, application of DNA makers in plant breeding, the role of gene technology in plant breeding; Crop breeding Institutes/Centers, Molecular biology in relation to intellectual property rights.

Practicals-32 Hrs

- 1) Study of types of vegetative propagation: Cutting, Grafting, budding, layering.
- 2) Study of propagation by modified stems and modified roots.
- 3) Preparation of media, explants, culture, initiation of shoot multiplication.
- 4) Pot and green house implants (demonstration) (5) Studying of floral biology.
- 6) Hybridization techniques bagging and emasculation.
- 7) Pollen viability test: Seed germination test, TTC test.
- 8) Mode of pollination study in different crops.
- 9) Visit to crop breeding stations/institutes / centres.
- 10) Estimation of protein quality, Amino acid Analysis and determination of oil and fatty acids.
- 11) Observation of colour and conditions of mature anthers in different crops.
- 12) Identification of and studying of important plant breeders.

- 1) Abbottt, A.J. and Atkin, R.K. eds. 1987. Improving vegetatively propagated crops. Academic press, New York.
- 2) Bose, T.K., Sadhu, M.K., & Das, P., 1986. Propagation of Tropical and Subtropical Horticultural crops, Nowya Prakash, Calcutta.
- 4) Hartmann, H.T., Kester E.D., Davis, F.T., and Geneve, R.L. 1997. Plant propagation. Principles and practices. Prentice Hall of India Private Limited, New Delhi.
- 5) Krishnamurthy. H.M. 1981. Plant Growth substances including application in Agriculture.
- 6) Pierik, L.M. 1987. In vitro culture of Higher plants Murtinus Nijhoff pub. Dordrecht.
- 7) Razdan, M.K. 1994. An Introduction to Plant tissue culture, Oxford and IBH Pub. Co., PVT. Ltd., Bombay and Calcutta.
- 8. Mac Donald, B. 1987. Practical woody plant propagation for nursery growers. Portland, OR: Timber press.
- 9. Sadhu, M.K. 1989. Plant propagation Wiley eastern Ltd. N. Delhi.

BOTANY: III SEMESTER SOFT CORE 3.4 PHYTOCHEMISTRY AND HERBAL TECHNOLOGY

Theory-32 Hrs

Unit-1: **Phytochemisrty:** Scope of phytochemistry, plants as source of chemical compounds, primary and secondary metabolites and its applications; Definition, source of herbal raw materials, identification, authentication, standardization of medicinal plants as per WHO guidelines and different herbal pharmacopoeias; Natural pigments, natural products as markers for new drug discovery.

Unit-2: Extraction, isolation and purification of phytochemicals: Selection of plant samples, processing and storage of samples for extraction; Factors influencing the choice of extraction, principles of extraction methods, infusion, decoction, digestion, maceration, percolation, solvent extraction, fluid extraction, ultrasound, microwave assisted extraction, advantage and disadvantage involved in each method; Isolation of selected primary and secondary metabolites — amino acids, proteins and carbohydrate; Phenolics, flavonoids, alkaloids, lipids, oils, terpenes and saponins; Purification techniques for primary and secondary metabolites — solvent-solvent fractionation and chromatography techniques.

Unit-3: Characterisation of Phytochemicals: Preliminary, qualitative and quantitative techniques – paper chromatography, thin layer chromatography, column chromatography-HPLC, GC (qualitative and quantitative), colour reactions for amino acids, sugars, phenolics, flavonoids, alkaloids, terpenes, saponins, oils, lipids; Spectroscopic estimations/gravimetric determination of total sugars, amino acids, proteins, phenolics, flavonoids, alkaloids, terpenes, saponins, oils, lipids; Characterisation using spectroscopic techniques - UV/VIS, FTIR, DSC (differential scanning calorimeter), NMR, MS, MALDI. XRD – single crystal and powder.

Unit-4: Standardisation and Validation of Photochemical: Quality determination of herbal drugs; Role of processing methods and storage conditions on quality of drugs; Standardisation parameters- impurity limit, ash content, extractable matter, moisture content, other phytochemicals, microbial contaminants, pesticides; Validation of drug – guidelines, limit of detection and quantification of impurities, organoleptic properties, physical, chemical, biological characteristics, stability testing, storage conditions and packing system/unit.

- 1) Survey and collection of medicinal plants for analysis.
- 2) Selection of plant part, processing and storage of samples for further analysis.
- 3) Extraction methods aqueous and sequential solvent extraction of compounds.
- 4) Preliminary phytochemical analysis of active principles from the extracts.
- 5) Antibacterial/antifungal activity of crude /active principles
- 6) Identification of secondary metabolites using TLC- phenolics, flavonoids, alkaloids, terpenes, saponins etc.
- 7) Column chromatographic separation of active principles.
- 8) Characterisation of active principle using spectroscopy, HPLC, GCMS, LCMS, FTIR, and MALDI TOF.
- 9) -12) Submission of report on TEN important curative principles of Indian medicinal plants.

- 1) Braithwaite, A. and Smith, F.J. 1996. Chromatographic Methods. 5th edn., Blackie Academic & Professional, London.
- 2) Bourne, U.K. Kokate, Purohit, C.K. and Gokhale S.B. 1983. Pharmacognosy. Nivali Prakashan Publication.
- 3) Braithwaite, A. and Smith, F. J. 1996. Chromatographic Methods. 5th edn. Blackie Academic & Professional, London.
- 4) Sadasivam. S. and A. Manickam, 0000. Bio Chemical methods 2ndedn. New Age International Pvt Ltd. New Delhi.
- 5) Harborne, J.B. 1984. Phytochemical Methods, 2ndedn. Chapman and Hall, London. Harborne J.B., 1973. Phytochemical methods a guide to modern techniques of plants analysis. Chapman and Hall Ltd. London.

BOTANY: III SEMESTER- OPEN ELECTIVE 3.1 PLANT PROPAGATION TECHNIQUES

Theory-32 Hrs

Unit-1: History, scope and importance of plant propagation; Propagation structures with reference to green house equipment and media; Seed propagation – the development of seeds, techniques of seed production and handling principles and media.

Unit-2: Vegetative propagation: Techniques of propagation by cuttings; stem cuttings – hard wood, semi hard wood, soft wood and herbaceous, leaf cuttings, leaf bud cuttings, root cuttings; Biology and techniques of grafting: Whip and tongue, wedge and cleft, bark, side grafting, approach.

Unit-3: Techniques of budding: T- budding patch budding, chip budding, ring budding; Layering and its natural modifications- simple layering, tip layering, mound or stool layering, air layering, compound or serpentine layering and trench layering; Propagation by specialized stems and roots.

Unit- 4: Micro propagation — techniques and applications in forestry and horticulture; Advantage, limitations and applications of vegetative propagation, Somaclonal variations; Propagation methods of some selected plants — Citrus, gape, mango, mulberry, hibiscus, rose, Croton, Eucalyptus.

- 1) Abbott, A.J. and Atkin, R.K. (eds.) 1987. Improving vegetatively propagated crops. Academic press, New York.
- 2) Bose, T.K., Sadhu, M.K., and Das, P., 1986. Propagation of Tropical and Subtropical Horticultural crops, Nowya Prakash, Calcutta.
- 3) Hartmann and Kester, 1983. Plant propagation
- 4) Hartmann, H.T., Kester E.D., Davis, F.T. and Geneve, R.L. 1997. Plant propagation. Principles and practices. Prentice Hall of India Private Limited, New Delhi.
- 5) Krishnamurthy, H.M. 1981. Plant Growth substances including application in Agriculture.
- 6) L.M. Pierik 1987. In vitro culture of Higher plants Murtinus Nijhoff pub. Dordrecht.
- 7) M.K. Razdan 1994. An Introduction to Plant tissue culture, Oxford and IBH Pub. Co., PVT. Ltd., Bombay and Calcutta.
- 8) Mac Donald, B. 1987. Practical woody plant propagation for nursery growers. Portland, OR: Timber press.
- 9) Sadhu, M.K. 1989. Plant propagation Wiley eastern Ltd. N. Delhi.

BOTANY: II SEMESTER- OPEN ELECTIVE 3.2 MEDICINAL PLANTS

Theory-32 Hrs

Unit-1: Medicinal Plants: History, scope and importance of medicinal plants; Indigenous medicinal sciences; History, origin, panchamahabhutas, saptadhatu and tridosha concept, Rasayana, plants used in ayurvedic treatments, Siddha: Origin of Siddha medicinal systems, Basis of Siddha system, plants used in Siddha medicine. Unani: History, concept: Umoor-etabiya, tumors treatments/ therapy, polyherbal formulations.

Unit-2: Medicinal Plants Conservation: Conservation of endangered and endemic medicinal plants; Endemic and endangered medicinal plants; Red list criteria; *In-situ* conservation-biosphere reserves, sacred groves, national parks; *Ex situ* conservation- botanic gardens, ethno medicinal plant gardens; Propagation of medicinal plants - objectives of the nursery, its classification, important components of a nursery, sowing, pricking, use of green house for nursery production, propagation through cuttings, layering, grafting and budding.

Unit - 3: Funding for Cultivation of Medicinal Plants: Sources of financial aids for medicinal plant cultivation: Aims and objectives, Functions and activities of the board, Schemes and Projects for Financial assistance, Funding of projects; Procedure for processing project proposal for approval, Implementation and monitoring.

Unit- 4: Ethno botany and Folk medicines: Definition; Ethno botany in India: Methods to study ethno botany; Applications of Ethno botany: National interacts. Ethno medicine. Application of natural products to certain diseases- Jaundice, cardiac, infertility, diabetics, Blood pressure and skin diseases. Brief introduction to poisonous plants.

- 1) Trivedi, P. C. 2006. Medicinal Plants: Ethnobotanical Approach, Agrobios, India.
- 2) Purohit and Vyas, 2008. Medicinal Plant Cultivation: A Scientific Approach, 2nd edn.
- 3) Agrobios, India.
- 4) Yoganarasimhan, S.N. Medicinal Plants of India- Vol 1- Karnataka, Interline Publishing Pvt. Ltd.

BOTANY: II SEMESTER - OPEN ELECTIVE 3.3 PLANT DIVERSITY AND HUMAN WELFARE

Theory-32 Hrs

Unit -1: Plant Diversity and Significance: Role of plant diversity in ameliorating energy crisis and global warming; Types of biodiversity-genetic diversity, species diversity, plant diversity at the ecosystem level; Agro-biodiversity and cultivated plant taxa, wild taxa; **Values and uses of Biodiversity-** Ethical and aesthetic values, precautionary principle, methodologies for valuation, uses of plants and microbes.

Unit -2: Loss of Biodiversity: Major causes of for biodiversity loss; Loss of genetic diversity, Loss of species diversity; Loss of ecosystem diversity; Loss of agro-biodiversity; Projected scenario for biodiversity loss; Management of Plant Biodiversity- Organizations associated with biodiversity management; Methodology for execution-IUCN, UNEP, UNESCO, WWF, NBPGR; Biodiversity legislation and conservations; Biodiversity information management and communication.

Unit -3: Conservation of Biodiversity: Conservation of genetic diversity, species diversity and ecosystem diversity, *In situ* and *ex situ* conservation, Social approaches to conservation, Biodiversity awareness programmes, Conservation of Heritage Trees.

Unit-4: Role of plants in relation to Human Welfare: Importance of forestry their utilization and commercial aspects, Avenue trees, Ornamental plants of India, Alcoholic beverages through ages, Fruits and nuts- Fruit crops of Karnataka and their commercial importance; Wood and its uses.

- 1) Krishnamurthy K. V. 2007. An Advanced Textbook on Biodiversity: Principles and Practice. Oxford & IHB Publishing Co. Pvt. Ltd. New Delhi.
- 2) Christian Leveque and Jean-Claude Mounolou, 2003. Biodiversity. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England.
- 3) Jeffries Michael J. 2006. Biodiversity and conservation, 2nd edn. Taylor and Francis Group, New York.

BOTANY: IV- SEMESTER- HARD CORE 4.1 ECOLOGY, CONSERVATION BIOLOGY AND PHYTOGEOGRAPHY

Theory-32 Hrs

Unit-1: Introduction and scope of Ecology: Plants and the environment- plant adaptation, ecotypes, habitat ecology- fresh water and marine water ecology (ecosystems), wetlands and their characteristics; Ecosystem function; The distribution of biomes; Major Terrestrial Biomes; Forests-Tropical Forests-Temperate Forests, Taiga, Grasslands, Savanna, Temperate Grasslands/Prairies, Tundra, Deser and Chaparral.

Unit-2: Environmental Biology: Global warming: Greenhouse gases - causes and consequences; Ozone depletion- causes and consequences; Air, water and soil pollution - major pollutants, their source, permissible limits - and control methods; Radioactive pollution- lonising radiation, disposal of radioactive waste, nuclear accidents; Environmental Education Programmes - WWF, UNEP, MAB; Role of plants in solving energy crisis and ameliorating global warming.

Unit-3: Biodiversity and Conservation Biology: Science in the service of Biodiversity, biodiversity and its value, biodiversity issues, concerns, management; Biodiversity hot spots; Biodiversity- threats and current status of biodiversity; IUCN categories, Red Data book and Red lists, invasive alien species as threat to biodiversity; Conservation strategies- past, present, and future; Attitudes about conservation; conservation movements; CITES (Convention on international trade in endangered species), WCU (World Conservation Union); Endangered species Act. 2002 (GOI); Protected areas, Network of India- history, size, scale and management; Heritage trees.

Unit-4: Phytogeography: Biogeography of the world, India and Karnataka; Climatic zones, tectonics, continental movements; Types of plant distribution – discontinuous distribution – land bridge theory, continental drift; continuous distribution-cosmopolitan, circumpolar, circumboreal, circumaustral, pantropical; Distribution of plants – islands; Phytochorea of the world, India; Plant dispersal, migrations and isolation; Eendemic plants of Western Ghats and Eastern Himalayas; Origin, distribution and acclimatization of coffee, cardamom, sugarcane, cashew, ragi, maize, wheat, rice and cotton; Remote sensing and GPS, study of vegetation by GIS (Geographical Information system).

- 1) Study of local vegetation by quadrate method.
- 2) Water analysis for pollution studies.(Bio-monitoring: TDS, Hardness, Chlorides, CO₂ COD, DO, BOD)
- 3) Rapid detection of bacteriological quality of water with special reference to feacal coliforms.
- 4) Morphology and anatomy of plants in relation to habitats Xerophytes, Mesophytes, Hydrophytes.
- 5) *In situ* and *Ex situ* method of conservation.
- 6) Eminent phytogeographers of the world (photos).
- 7) Continental drift (charts).
- 8) Application of Remote Sensing, GIS and GPS in Forestry and Wild life management.
- 9) Biogeography of the world Oceans, deserts, islands, mountains.

- 10) Biogeography of India –rivers, mountains, islands.
- 11) Floristic regions of world India and Karnataka.
- 12) Study of endemic plants of India.
- 13) Origin, acclimatization and distribution of Coffee, Cardamom, Sugarcane, Cashew, Ragi, Maize, Wheat, Rice and Cotton.

- 1) Polunin, N. 1961. Introduction to plant geography.
- 2) Good R.D. 1974. Geography of the flowering plants.
- 3) James H. B. 1998. Biogeography.
- 4) Cain, S.A. 1944. Foundations of plant Geography.
- 5) Croiat, 1952. Manual of Phytogeography.
- 6) Edgar A. 1972. Plants, Man and Life.
- 7) Valentine, D. H. 1972. Taxonomy, Phytogeography & Evolution.
- 8) Phil Gibson J. and Gibson Terri, R. 2006. Plant ecology.
- 9) Primack, R. B. 2006. Essentials of conservation biology.
- 10) Ricklefs, R. E. 2001. The Economy of Nature.
- 11) Narasaiah M. L., 2005. Biodiversity and Sustainable Development.
- 12)Tondon P, Abrol Y. P, Kumaria S., 2007. Biodiversity and its significance.
- 14) Krishnamurthy K. V. 2007. An Advanced Textbook on Biodiversity: Principles and Practice.
- 15) Christian Leveque and Jean-Claude Mounolou (2003). Biodiversity.
- 16) Jeffries Michael J. 2006. Biodiversity and conservation.

BOTANY: IV- SEMESTER- SOFT CORE 4.2
PROJECT WORK

BOTANY: IV- SEMESTER- SOFT CORE 4.1 SEED TECHNOLOGY

Theory-32 Hrs

Unit-1: Seed Technology: Introduction to seed science and technology and its goals; Development of seed technology industry in India; Seed as basic input in agriculture; Seed Biology - Seed development, morphology and anatomy of dicot and monocot seeds; Seed structure and functions; Seed programmes and organizations; Seed village concept, seed production agencies, seed industry and custom seed production in India; International Seed Science and Technology Organizations.

Unit-2:Seed Production: General principles of seed production in self and cross pollinated and vegetatively propagated crops; Hybrid seed production; Maintenance of inbred lines and breeders seeds; Synthetic and composite seeds; Improved seed and their identification; Germplasm banks; **Seed Processing**-Harvesting, seed drying, seed cleaning and grading; Equipments; Seed Storage- types of storage structure; seed factors affecting storage life, effect of storage on relative humidity, temperature and moisture; Seed deterioration; Seed treatment.

Unit-3: Seed Quality Testing: Devices and tools used in seed testing; ISTA and its role in seed testing; Seed sampling- physical purity and heterogeneity test; Seed moisture contentimportance and determination and methods; Viability and vigour testing; Genetic purity testing -objective and criteria for genetic purity testing, seed health testing, field and seed standards, designated diseases, objectionable weeds; Significance of seed borne diseases, seed health testing and detection methods for seed borne fungi, bacteria, viruses and nematodes; Preparation and dispatch of seed testing reports, storage of guard samples, application and use of seed standards and tolerances.

Unit- 4: Seed Certification: Principles and philosophy of seed certification, purpose and procedures, national seed programme; National Seed Corporation (NSC) - agencies responsible for achieving self-reliance in seed production and supply of quality of seeds (State Seeds Corporation; National Seed Development Council (NSDC); Central Seed Committee(CSC); Seed market surveys, seed industry in relation to global market; Concept of WTO, GATT, IPR, Plant Variety Protection and its significance seed technology; UPOV and its role.

- 1) Determination of physical purity of seed samples.
- 2) Determination of density or weight per thousand seeds.
- 3) Determination of seed Heterogeneity.
- 4) Visual examination of dry seeds for disease symptoms.
- 5) Determination of moisture content by hot air oven method.
- 6) Seed viability test- TTC method.
- 7) Determination of seed germination by TP/BP/Sand method.
- 8) Evaluation of seedlings vigour by BP/Sand methods.
- 9) Seed vigour evaluation by (a) conductivity test (b) Hiltner's test (c) Performance test(d) Accelerated ageing test (e) Cold test.
- 10) Examination of suspensions obtained from washings of seed.
- 11) Infection sites studied by planting seed components.
- 12) Detection of seed-borne fungi and their characters of five seed borne pathogens. Vist: Visit to seed industries/seed companies/ seed research stations.

- 1) ACAR.2009. Handbook of Agriculture. Indian Council of Agricultural Research, New Delhi.
- 2) ACAR.2013. Handbook of Horticulture. Indian Council of Agricultural Research, New Delhi.
- 3) Agarawal, P. K. 2005. Principles of Seed Technology.2nd edn. Oxford and IBH Publishing Co. Pvt. Ltd. New Delhi.
- 4) Basra, A. S. 2006. Handbook of Seed Science and Technology, The Haworth Press, USA.
- 5) Copeland, L. O. and McDonald, M. B. 2001. Principles of Seed Science and Technology. 4th edn. Chapman & Hall.
- 6) Copeland, L.A. 1995. Principles of Seed Science and Technology- Kluwer Academic Publishers, The Netherlands.
- 7) Michael, B. and Bewley, D. 2000. Seed technology and its biological basis. Wiley-Blackwell.
- 8) Neergaard, P. 2005. Seed Pathology, Palgrave, Macmillan, Denmark. Science, Technology and Uses. CABI, UK.
- 9) Vanangamudi, K., Natarajan, K., Saravanan, T., Natarajan, N., Umarani, R., Bharathi, A. and Srimathi, P. 2006. Advances in Seed Science and Technology: Vol: III: Forest Tree Seed Technology and Management, Agrobios, New Delhi.

BOTANY: IV- SEMESTER- SOFT CORE 4.2 SEED PATHOLOGY

Theory - 32 Hrs

Unit-1: Seed Pathology: Introduction, historical development, development of seed health testing; Reduction in crop yields loss in due to seed-borne diseases; Seed-borne pathogens (Fungi, Bacteria, Mycoplasma-like Organisms, fastidious Vascular Bacteria, Spiroplasmas, Viruses, Viroids, Nematodes); Location of seed-borne inoculums, histopathology of some seed-borne pathogens; Seed infection, mechanism of seed infection, seed infestation or contamination; Factors affecting seed infection; Longevity of seed-borne pathogens.

Unit-2: Seed transmission and inoculation, factors affecting seed transmission; Cultural practices, epidemiology and inoculum thresholds of seed-borne pathogens; Classification of seed-borne; Role of Seed-borne inoculum in disease development; Economic loss due to seed borne pathogens; Certification program; Seed health tests, Nonparasitic seed disorders; Deterioration of grains; Storage fungi, field and storage fungi; Invasion by storage fungi; effects of seed deterioration.

Unit-3: Detection of Seed-borne Diseases: Examination of dry seeds; Isolation of fungi, Bright-field microscopic examination, observation under UV light, measurement of gases, Determination of FAV, Moldy smell, collection of seed exudates; Immunoassays, ergosterol estimation; Avoiding damage to seeds during harvesting; Processing, threshing, storage conditions, reducing seed moisture to safe limits, seed treatment, resistance.

Unit-4: Mycotoxins - Fungi known to produce mycotoxins, Factors affecting mycotoxin production the effects and control of mycotoxins, storage conditions, sorting of grains, cultural operations, chemical treatment, biological control, detoxification, regulatory measures, use of resistant cultivars; Control of seed-borne pathogens; Selection of seed production areas; Crop management, crop rotation, isolation distances, rouging, biological control, chemical method, mechanical method, physical methods; Certification- certification standards, plant quarantine, national and international regulations.

Practicals-32 Hrs

- 1-5) Detection of seed-borne fungi and their identification.
- 6) Detection of Seed-borne bacteria.
- 6) Detection of seed-borne viruses.
- 7) Detection of seed-borne insects by egg-plug staining.
- 8) Detection seed-borne nematodes.
- 9) Effect of deterioration of grains by Storage Fungi.
- 10) Detection of seed-borne fungi by PCR.
- 11) Estimation of ergosterol by UV-visible Spectrophotometer.
- 12) Detection of mycotoxins by thin Layer chromatography.

- 1) Agarwal, V. K. and Sinclair, J. B. 1996. Principles of Seed Pathology, 2nd edn. CRC Press, Tayler and Francis, USA.
- 2) Neergaard, P. 1977. Seed Pathology. Vol. I.. Macmillan Press, Cornell University, USA.
- 3) Agrios, G. N. 1994 Plant Pathology 2nd edn. Academic Press, New York.
- 4) Mehrotra, R. S. 1983-Plant Pathology Tata Mc. Graw Hill Pub. Co. Ltd., New Delhi.

- 5) Rangaswamy, G. and Mahadevan, K. 2002. Diseases of Crop plants in India. Prentice Hall of India Private Limited New Delhi.
- 6) Agarawal, P. K. 2005. Principles of Seed Technology.2 nd
 Co. Pvt. Ltd. New Delhi. edn. Oxford and IBH Publishing
- 7) Basra, A. S. 2006. Handbook of Seed Science and Technology, The Haworth Press, USA.
- 8) Copeland, L.A. 1995. Principles of Seed Science and Technology- Kluwer Academic Publishers, The Netherlands.
- 9) Vanangamudi, K., Natarajan, K., Saravanan, T., Natarajan, N., Umarani, R., Bharathi, A. and Srimathi, P. 2006. Advances in Seed Science and Technology: Vol: III: Forest Tree Seed Technology and Management, Agrobios, New Delhi.

BOTANY: IV- SEMESTER- SOFT CORE 4.3 BIO- ANALYTICAL TECHNIQUES

Theory-32 Hrs

Unit- 1: Spectroscopy: Principles of UV-Visible spectroscopy, chromophores and their interaction with UV-visible radiation and their utilization in structural, qualitative and quantitative analysis of drug molecules; Infrared Spectroscopy, Infrared radiation and its interaction with organic molecules, vibrational mode of bonds, instrumentation and applications, interpretation of IR spectra; FTIR and ATR, X-ray diffraction methods.

Unit-2: Nuclear Magnetic Resonance Spectroscopy: Magnetic properties of nuclei, field and precession, instrumentation and applications of NMR; Chromatographic techniques- Principles and applications- types- column, paper, thin layer and gas chromatography, HPLC, HPTLC, size exclusion chromatography, Affinity chromatography, Mass spectrometry, MALDI-TOF.

Unit-3: Electrophoresis: Principle and application of PAGE, SDS PAGE, immunostaining, immunoelectrophoresis, Iso-electric focusing, 2D electrophoresis Centrifugation- Principles, techniques of preparative and analytical centrifugation. Ultracentrifuges, molecular weight determination, sedimentation analysis, RCF. Microscopy- principles and applications of electron microscope (SEM and TEM), CryoEM, Preparations of specimen for electron microscopy- freeze drying, freeze etching, fixing, staining; confocal, fluorescent, flow cytometry - principles and applications.

Unit-4: Molecular Biology Techniques: Primer designing; Principles and applications of PCR; Blotting techniques; Hybridization techniques; Micro-array; Next Generation Sequencing- Nucleic acid sequencing.

Practicals-32 Hrs

- 1) Calibration of bio-analytical instruments.
- 2) Principles and instrumentation and applications of imaging techniques:
- 3) Separation of fatty acids/lipids by TLC/HPTLC.
- 4) Separation of proteins by PAGE, SDS- PAGE.
- 5) Agarose gel electrophoresis of DNA/RNA.
- 6) Immunoelectrophoresis
- 7) Agar gel diffusion, counter immuno electrophoresis.
- 8) Verification of Beer Lambert law with the U.V. spectrophotometer.
- 9) Demonstration of blotting techniques.
- 10) Performing PCR for amplification of ITS regions of fungi/bacteria.

- 1) Braithwaite, A. and Smith, F.J. 1996. Chromatographic Methods. 5th edn. Blackie Academic & Professional London.
- 2) Budzikiewicz, H., Djerassi, C. and Williams, D.H. 1968. Mass Spectrometry of Organic Compounds. Holden-Day, San Francisco, CA
- 3) Harborne, J.B. 1984. Phytochemical Methods. 2nd edn. Chapman and Hall, London.
- 4) Harborne J.B. (1973) Phytochemical methods a guide to modern techniques of plants analysis. Chapman and Hall, London Ltd.