
Input unit

ALUControl
unit

Registers

Output unit

Main Memory
(e.g RAM)

Secondary Memory
(e.g Hard Disk)

Unit -1 Embedded systems

Block diagram of General purpose computer system

A computer is a combination of two components namely hardware and software. Hard disk, CPU,

memory (volatile also called RAM), CD-ROM and printers are a few examples of the hardware which are

considered as part of a computer. The software are applications for various purposes and operating systems

(Windows and Linux are two highly used operating systems) to manage the applications and computer

hardware efficiently. Desktops and laptops are examples of such digital computer systems.

Input devices, such as keyboard and mouse, allow a user to provide input to the computer system.

The users can see useful information on output devices such as monitors and printers. These input/output

(I/O) devices communicate with the CPU through different types of interfaces. The CPU carries out all

kinds of processing and comprises three basic building blocks, namely, arithmetic logic unit (ALU), control

unit and set of registers.

The main memories are random access memory (RAM) and read-only memory (ROM). These

memories are accessible directly from the processor. Low access-time and random access are their major

attributes. Hard disk is an example of the secondary memory and does not interact with the CPU directly.

Its information access-time is relatively higher than that of the primary memories

1 |Embedded systems

 Embedded systems

 Microcontroller

Microprocessor

Memory

Peripheral Devices

I/O devices (Display, keypad)Electrical, mechanical, optical, etc. device

EMBEDDED SYSTEMS

A generic block diagram of an embedded system is shown in Figure

An embedded system is developed for a specific application to perform dedicated task(s). An

embedded system consists of a processor, memory and other interfaces and is the building blocks of a

microcontroller which is embedded inside a specific embedded system. The software is designed to handle

a range of different tasks and is normally programmed to ROM memory. The ROM in embedded systems is

employed to store programs permanently even when the power is turned off.

Advantages:

 small size,

 low cost, and

 low power requirements

Examples of Embedded system:

 cell-phones and other handheld devices,

 blood pressure monitoring equipment

 digital multi-meters

 temperature and humidity measuring devices

2 |Embedded systems

Microcontroller

 Microprocessor

From the system hardware perspective, an embedded system embeds a microcontroller inside it, which

in turn contains a microprocessor core. This is a generic hierarchical view

MICROCONTROLLERS

1. Applications in communication: Radio, telephone, cellular phones, answering machines,fax

Machines, wireless routers.

2. Consumer electronics: Washing machine, clocks and watches, games and toys, remote controls,

Audio/video electronics.

3. Automotive systems: Braking system, electronic ignition, locks, power windows and seats,

collision avoidance

 4. Commercial usage: ATM machines, bar code readers, elevator controllers.

 5. Medical treatments: Cancer treatments, dialysis machines, blood pressure measuring equipment,

 (ECG), etc.

 6. Industrial: Process automation, oil refineries, food processing plants, paper and board mills, etc.

 7. Military use: Missile guidance systems, global positioning systems, surveillance systems.

Design Parameters of Embedded Systems

While designing an embedded system, the important factors to b considered are -

1. Power consumption

2. Speed of execution

3. System size and weight

4. Performance

Microcontrollers

A microcontroller combines a microprocessor, read only memory (ROM), random access memory (RAM),

and input/output (I/O) peripheral devices on a single chip. For this communication among subsystems,

different buses are used. A bus is a collection of wires over which digital signals propagate in the form of 0s

3 |Embedded systems

 Embedded system

Microprocessor

CODE MEMEORY

DATA MEMEORY

CONTROL & TIMING INTERFACES

DIGITAL I/OS ANALOG I/OS COMMUNICATION INTERFACES

CONTROL BUS

ADDR BUS DATA BUS

and 1s. Buses internal to the chip can be broadly categorized in three groups namely data, address, and

control.

The basic block diagram of a microcontroller is as shown below.

Any memory location inside RAM, ROM and in registers is identified by unique numbers called

addresses.

Address signals flow over the address bus. The size of the address bus decides the unique addresses

generated by a microprocessor.

The data bus carries the data. Increasing the size of the data bus allows more number of bits to be

communicated between two subsystems.

 Control signals such as read/write inform whether the CPU is interested in reading some

information or wants to write some information to the location whose address was generated over the

address bus.

Major component of a microcontroller is the general purpose peripheral device called port, which

provides a physical connection between the microcontroller and the outside world devices. Based on the

type of the device being connected with the microcontroller, ports can be configured as input or output. In

4 |Embedded systems

addition, some of the port registers are used to monitor the device status, while other registers are used to

configure the direction of the port.

Information exchange between a microcontroller and a device can take place in parallel or serially.

Broadly, I/O ports can be classified in two categories

• Parallel Port: When two communicating entities are connected with a group of lines, a number of

data bits can be exchanged simultaneously.

• Serial Port: In this case, there is only one line for the data to travel between two communicating

parties.

Difference between the Microcontrollers and Microcomputers

Microcomputers Microcontrollers

RAM, ROM, CPU and I/O interfaces are integrated
in different chips on a motherboard

RAM, ROM, CPU and I/O interfaces are embedded
inside a single chip

More speed of memory and other peripherals The speed of memory and other peripherals is less

Size of the memory is more Size of the memory is less

Memory: Information Storage Device

All Digital systems store information in binary digits called bits. These bits are used for representing

Operators, operands, and addresses. There are two states for a binary bit. A `1' represents the presence of a

voltage and a `0' represents the absence of voltage. This representation is called positive logic.

To store binary information, CMOS circuits can be built and a collection of a large number of such circuits

is called memory. Memory stores data sequentially which is as shown in Figure.

Memories are made up of data storage locations, which are uniquely addressable and can be accessed by the

processor. Each storage location can hold 8 bits of information. Since each byte is uniquely addressable,

such memories are called byte addressable memories.

5 |Embedded systems

Memory Address Data
0x201A 3241 10110111
0x201A 3242 01010100

.

.

.

.

.

.

.

.

.

.

.
0x201A 3244 1011 1101
0x201A 3243 1010 1101
0x201A 3242 1011 1100

During a write operation, data is transferred from processor to memory. Whereas in Read operation, data is

transferred from memory to the processor

Based on read and write operations, memories are grouped in two categories namely

 Read-only memory (ROM) and

 Random access memory (RAM).

The ROM allows read operations only

In case of RAM both read as well as write operations can be performed by the microprocessor.

Read Only Memory

The memory that allows the processor to only read its contents is Read Only Memory (ROM).

Another characteristic of ROM is that they can store information permanently even when no power is

applied. The information in the ROM is therefore non volatile.

Instructions or a program code are stored in a ROM.

Example: The boot sequence with which an operating system is loaded.

 Based on different methods of programming the ROM, ROM is classified into

 PROM

 EPROM

 EEPROM

 Flash memory
 Programmable ROMs (PROMs):

These can be programmed only once. Any change to the contents will require the replacement of the

chip.

 Erasable Programmable ROMs (EPROMs)

These can be reused by erasing and re-programming. Conventionally, information was erased and

written to with the help of ultraviolet (UV) light. The changes cannot, however, be made while the chip is

installed in the system. Another drawback of EPROM is that the whole chip needs to be completely erased.

 Electrically Erasable PROMs (EEPROMs)

 These are EPROMs but their contents can be erased and written to by applying electric signals to

the storage cells. Furthermore, erasure and writing can take place while the chip is installed in the circuit.

Flash memory

It is a type of EEPROM that allows read and write operations to be carried out in large multi-byte

blocks. In general, the erase cycles for non-volatile memories are slow. Flash memory allows erasing large

block sizes, which provides these memories a significant speed. One of the limitations of ash memories as

well as EEPROMs is their limited number of read and write cycles.

6 |Embedded systems

Random Access Memory

The memory which allows the processor to read from and write to its locations is known as Random

Access Memory (RAM).

One limitation of RAM is that information stored in it is lost as soon as the power applied to it is removed.

On the other hand, RAM is not limited by the number of read and write cycles and is more suitable for

storing data that is updated frequently. The read and write operations of RAMs are faster than those of

ROMs.

There are different types of RAMs namely-

 Dynamic RAM (DRAM)

 Static RAM (SRAM)

Dynamic RAM (DRAM) is the most commonly used type of RAM. Each memory cell of a DRAM,

can store one bit of information. It is made up of two transistors and a capacitor. The transistor acts as a

switch while the

Capacitor holds the charge. As the capacitor discharges, the voltage representing `1' needs to be refreshed.

This refresh operation is performed a number of times in one second and results in reducing the memory

operating speed.

Static RAM (SRAM) employs a flip-flop for storing a bit in a memory cell. A Flip-flop requires 4 to 6

transistors and does not require refreshing circuitry. SRAM is faster than DRAM because of the absence of

refresh cycles.

On a given chip SRAM yields less memory space as compared to DRAM. This is because more numbers

of transistors required by an SRAM cell. This also makes them more expensive. Because of their features,

SRAM is normally used for building cache memories while DRAM is employed for RAM chips. In

comparison to ROM, the access time of RAMs is less.

Differences between DRAM & SRAM

7 |Embedded systems

Program counter

Arithmetic logic unit

Register file

Control unit

Timing Unit

Aligned and Unaligned Memory Accesses

For a byte (8bit) addressable memory, each memory access of size byte is inherently aligned.

A 32-bit processor will have a 32-bit data bus to access the memory. It is possible to perform memory

read/write operations of half word (16-bit) and word (32-bit) size. If a memory access, of size halfword, is

performed from an even address, then this memory access is an aligned access. On the other hand, if an

odd address is used, then the resulting memory access is an unaligned access.

Similarly, for a 32-bit word memory access, word aligned means the data is stored on a word

boundary, i.e., the memory address accessed is divisible by 4. A word memory access from an address not

divisible by 4 is termed unaligned word access.

THE MICROPROCESSOR

A Microprocessor, also known as a central processing unit, has a capability of executing instructions at an

extremely high speed. Broadly, a microprocessor has five basic components namely –

 Arithmetic logic unit (ALU),

 Control unit,

 Bank of registers,

 Interconnection buses, and

 Timing unit.

The block diagram of a microprocessor is shown in Figure.

Control unit:

As the Microprocessor works with only binary digits, each operation should be encoded by a unique

binary combination, which is termed the operational code or the op-code. Various steps required for the

execution of an operation are performed using binary signals, which are known as control signals. These

control signals are generated by the control unit.

8 |Embedded systems

The functions of various blocks of a
microprocessor is described below

Arithmetic Logic Unit (ALU)

Arithmetic logic unit (ALU) is to perform
arithmetic operations such as addition,
subtraction and logical operations such as,
such as AND, OR operations.

The operations and operands are initially stored in the memory. They are brought inside the

microprocessor using buses and are stored temporarily in Microprocessor registers. Data transfers among

different processor registers as well as ALU are performed using the buses inside the microprocessor.

The function of a microprocessor is to execute a user program. The executable program is stored in

memory initially and is executed instruction by instruction. During program execution, the microprocessor

performs different operations.

The instructions from memory and data from memory or I/O ports is stored temporarily inside the

microprocessor using registers.

Working of a microprocessor

The working of the microprocessor is as shown in the following figure.

The steps that are carried out by the microprocessor are listed below.

 The microprocessor fetches the instruction from the address that is present in PC on the address bus

 The control unit decodes its opcode

 Processor executes R = X + Y by

- fetching the current value of X from the memory

- fetching the current value of Y from the memory

- instructing the ALU to add these two numbers

- writing the sum back to the memory address of R

These are the steps carried out by the processor to execute one instruction.

9 |Embedded systems

Let us assume that the microprocessor

executes R = X + Y addition instruction. Let's

assume that this instruction is compiled and is

present in the memory. This instruction will

consist of three fields. One of them will

contain the operational code representing

addition, while the other two fields will

contain the memory addresses of the locations

where variables X and Y are stored. The PC

register contains its memory address.

Control Unit

Register
1

Register 2

Accumulator

Memory
R = X + Y

X = 5

Y = 7

Microprocessor

Memory interface based Architecture

Complexity based classification

Instruction set Architecture

Von Numan
Architecture

Harvard ArchitectureInstruction operand based classification

CISCRISC MEMORY- MEMORYREGISTER - MEMORYREGISTER – REGISTER

Difference between Microprocessor and Microcontroller:

Sl.
No

Microprocessor Microcontroller

1 CPU is stand alone, RAM,ROM ,I/O devices
and timers are separate and interfaced with
CPU

CPU, RAM, ROM,I/O devices and TIMERS
are all located on a single chip.

2 Designer can decide on the amount of RAM,
ROM and I/O ports.

Fixed amount of RAM,ROM and I/O ports

3
Expensive applications

Applications in which cost, space and power
are critical

4 Versatile and general purpose Not very versatile
5

Program memory and data memory are same
Uses different program memory and data
memory.

6 Large number of instructions with flexible
addressing modes

Limited number of instructions with few
addressing modes

7 Very few instructions which have bit handling
capability

Many instructions with bit handling
capability

8 System cost is more System cost is less
9 Clock frequency > 1 G Hz Clock frequency 10-20 M Hz

Microprocessor Architecture Classification

The architecture of the microprocessor can be classified as-

1. Instruction Set Architecture (ISA)

2. Memory interface based Architecture

10 |Embedded systems

RISC Architecture

Complex Tool Development

Simplified Hardware

Software Tools

Processor

CISC Architecture

Simplified Tool Development

Complex Hardware

Instruction Set Architecture (ISA)

The Instruction set Architecture is further subdivided based on

 Complexity of instructions and

 Instruction operands.

Complexity-Based ISA classification

Based on the ISA complexity the microprocessors are categorized into two groups:

1. Complex instruction set computer (CISC) and

2. Reduced instruction set computer (RISC).

The differences between RISC & CISC architecture is as shown below

Complex instruction set computers (CISC):

A complex instruction set computer (CISC) is a computer architecture in which single

instructions can execute several low-level operations (such as a load from memory, an arithmetic

operation, and a memory store) or are capable of multi-step operations or addressing modes within

single instructions.

The key features of the CISC architecture are discussed below

 This architecture is suited where the processor speed faster than available memories

 A single complex instruction can perform many operations.

 Complex instructions require more clock cycles to complete

 Most of the instructions can access memory.

 A program running on a CISC architecture involves a small number of complex instruction.

 In CISC the complexity is embedded in the processor hardware, making the compilation tools

design simpler.

 Example: Intel (x86) and Freescale 9S12.

11 |Embedded systems

Reduced Instruction Set Computers (RISC):

 A Reduced Instruction Set Computer is a type of microprocessor architecture that utilizes a

small, highly-optimized set of instructions rather than the highly-specialized set of instructions.

The key features of the RISC architecture are discussed below

• This architecture is suited where the processor speed matches that of memories.

• Simplified instructions set.

• Each complex operation is broken into multiple simplified operations and dedicated instructions are

provided for these operations.

 Example: load and store instructions

• As the instructions set are simple they are executed in a single processor clock cycle.
• Requires fewer memory addressing modes.

• Simple hardware architecture.
 Example: MIPS, ARM, SPARC and PowerPC.

Difference between the RISC and CISC Processors

RISC CISC
It is a Reduced Instruction Set Computer. It is a Complex Instruction Set Computer.

It requires multiple register sets to store the
instruction.

It requires a single register set to store the
instruction.

RISC has simple decoding of instruction. CISC has complex decoding of instruction.

It uses a limited number of instructions It uses a large number of instructions

It uses LOAD and STORE in the register-to-register
a interaction of program.

It uses LOAD and STORE instruction in the
memory-to-memory interaction of a program.

RISC has more transistors on memory registers. CISC has transistors to store complex instructions.

The execution time of RISC is very short. The execution time of CISC is longer.

It has fixed format instruction. It has variable format instruction.

The program written for RISC architecture needs to
take more space in memory.

Program written for CISC architecture tends to take
less space in memory.

Example: ARM, Power Architecture, Alpha, AVR,
ARC and the SPARC.

Example: VAX, Motorola 68000 family and the
Intel x86 CPUs.

Instruction Operand-Based ISA Classification

 The operands for an instruction can be specified either using memory or registers or combination of both.

The ISA classification based on how the operands are specified can be categorized in the following groups.

1. Memory-memory:

This type of ISA allows more than one operand to be specified in memory.

Example: VAX and PDP series.

12 |Embedded systems

Processor

Code Memory

Data Memory

Control Bus

Data Bus

Address Bus

2. Register-memory:

These architectures allow one operand of an instruction to be specified in memory, while the other

operand is in CPU register. In this ISA the individual instructions execute faster. However, this may

require more number of instructions to complete the same task.

Example: x86 and Motorola 68k.

3. Register-register:

 This ISA classification is also called load-store architecture. Memory is accessed using load and

store instructions. All instructions other than load and store instructions get their operands and store

their results to registers. The execution of these instructions is very fast. But this ISA requires the

most number of instructions to complete a given task. Since in many cases the immediate results are

not stored to the memory, and are temporarily placed in the registers, it might be used by the

subsequent instructions.

Example: ARM and MIPS.

Memory interface based Architecture classification

 There are two types of memory interface architectures, namely,

 Von Neumann Architecture and

 Harvard Architecture

Von Neumann Architecture

The following figure shows the architecture of Von Neumann Architecture

13 |Embedded systems

The von Neumann architecture uses a

common bus for both data and code

memory. As a result either an instruction

can be fetched from memory or data can

be read/written to/from memory during

each memory access cycle. Instructions

and data are stored in the same memory

subsystem and share a common bus to

the processor.

Example: Micrprocessors

PROCESSOR

CODE MEMORY DATA MEMORY

Control Bus

Address Bus

Data Bus

Harvard Architecture

The following figure shows the architecture of Harvard Architecture

The Harvard architecture, uses separate buses for accessing code and data memories. Hence

data and instructions can be accessed simultaneously. In addition, the next instruction may be fetched

from memory at the time when the previous instruction is about to finish its execution. However, main

memory access time is a major bottleneck in the overall performance of the system.

Example:. ARM-based microcontrollers.

Difference between Von Neumann Architecture and Harvard Architecture

14 |Embedded systems

Performance Comparison of Different Architectures

A microprocessor’s architecture can be compared against other architectures by running benchmark

programs. The following performance evaluation equation is used to quantify the execution speed of a

microprocessor.

Execution Time = Tc∑
i=0

N

Ci - - - - - - -- - - - -(1.1)

In (1.1), Tc is the cycle time, Ci represents the number of cycles required for i th instruction execution,

and N is the number of instructions in the test program. If each instruction requires the same number of

cycles for execution, then the expression in (1.1) is simplified to

Execution Time = Tc N C.- - - - - - - - - - - - - -- - - - - -- (1.2)

From the expression in (1.2) we observe that there are three different possible ways to speed up the

execution of a microprocessor and are listed below:

1. Use fewer instructions for a given program. In other words, it is possible to improve the

execution speed by efficient programming.

2. Reduce the number of cycles for the instructions. This is mainly dependent on the instruction set

architecture of the microprocessor.

3. Speed up the clock frequency of the microprocessor or equivalently reduce the cycle time. This

refers to the maximum clock frequency of the processor. The maximum clock frequency

depends on –

a) The physical limitation of processor clock frequency

b) The technical limitation associated with increasing the clock frequency

a) The physical limitation of processor clock frequency:

Let us assume a microprocessor is running at 3 GHz clock frequency. i.e., one clock cycle takes

1
3

 ns. Now the electrical signals travel a physical distance of approximately 10 cm during
1
3

 ns.

Assuming that a circuit is working synchronously, it is necessary that a clock signal is available at

different parts of the circuit simultaneously. This can be ensured by requiring the propagation delay

much less than clock cycle time. Let us use a factor of 10, which will require the size of the circuit

to be about 1 cm. The CPU core die size of Intel Core2 Duo Processor is approximately 1 cm. Now

if we want to double the speed of this processor, the size of the processor core should become one-

half. If this size limitation is violated, then some parts of the processor circuit are operating in the

current clock cycle, while some other parts of the circuit are still not done with the previous clock

cycle. This type of distributed system is very hard to deal with in practical systems.

15 |Embedded systems

Operating System Call interface for Application

Operating System (OS) core System Libraries

Architecture Dependent OS Components Device Drivers

User Application 1 User Application k

Hard ware

b) The technical limitation associated with increasing the clock frequency.

As the CPU cores become smaller and smaller, the problem of heat dissipation starts arising. As
processors are made up of transistors and these transistors can be switched ON and OFF at the clock
frequency, each transistor dissipates power when switched from one state to another. Switching at fast
speed leads to more power dissipation. When the processor core size is reduced to increase the clock
speed, the corresponding amount of heat generated by these switching transistors couldn't be dissipated
easily due to the reduced chip size. The amount of speed gain and the corresponding increase in the cost
of associated cooling mechanism are some of the practical barriers in increasing the processor speeds
further. One natural solution to this limitation is to use multiple processors of moderate speed rather
than to have one processor of too high speed, leading to multi-core processor architecture.

Software System and Development Tools

The intelligence of a microcontroller-based embedded system lies in its software which is a collection of
instruction sequences, also called functions, that are stored in memory (either ROM or RAM). These
functions are implemented to perform certain tasks and are fundamental building blocks of a software
system. Based on the collective functionality of a set of functions, the software subsystem includes -

• Operating system,
• Device drivers, libraries and
• User applications.

Operating system:

Operating system includes the microprocessor, memory, Input/Output devices. The operating

system manages these devices using the hardware architecture dependent OS components. Also it allows

user applications to use these devices in a systematic way through OS. These interfaces provided by the OS

is as shown in Figure

16 |Embedded systems

Device drives or drivers :

A device driver is a software sub-system, which allows the operating system to communicate with the

hardware devices. Drivers for some of the standard devices are sometimes integrated as an essential

component of the operating system. But for some hardware devices, the drivers are provided by the vendor.

Libraries:

The software library is a collection of function calls developed for specific job and is made available to

the user. By using a library, the software application developer reuses the specific functionality already

implemented by the library. Libraries allow sharing the code in a modular fashion, as well as easing the

distribution of the code.

Applications:

 Application is a collection of one or more programs, which are designed to perform operations for

a specific application requirement. Application software cannot run (or execute) on its own. It is dependent

on the OS and libraries.

Software Development Tools

The process of converting user program to executable outputs involves two main steps:

(1) Compilation and

(2) Linking.

Compilation Process

The tool used in the compilation process is called either a compiler or an assembler depending on the type

of the user program source file.

If the user program is written in assembly language, then an assembler is used to convert source

code to an object code, which is also called machine code. In this process, an assembly instruction is

converted to its equivalent opcode or machine code. Assembly language programs are also called low level

programs.

If the user program is written in a high level language, then a compiler is used to convert it to the

machine code. Most of the compilers also provide the assembly equivalent code, in addition to machine

code. The process of converting a user program to machine code using either a compiler or an assembler is

as shown in Figure

17 |Embedded systems

Source Code (High level)

Compiler

Source Code (Low level)

Assembler

Machine Code

User assembly code

Assembler

Machine Code

Linker

Source code
(High Level)

Compiler

Machine/
Object code

Source code
(High Level)

Compiler

Machine/
Object code

Configurations

List file
MAP file

Executable

Library

The selection of a compiler is not only dependent on the choice of the high level language, but also on the

hardware platform to be used for running the program.

For example, a program is written in C language and the user wants to run its corresponding executable on

an Intel microprocessor then we need to compile the C language program using Intel's C compiler.

Building an Executable Using a Linker

The job of a linker is to construct an executable by combining different object codes (or object files)

obtained after compiling the user program codes. In the process of linking, the linker has to decide the

locations (addresses) of different object codes and data segments.

In addition, some of the functions used in the program are not implemented by the programmer, rather they

are provided by a library. It is the job of a linker to get the desired modules from different libraries and

integrate them in the process of constructing the executable. The functioning of the linker is shown in

Figure

18 |Embedded systems

The content of a library is nothing but a collection of different object codes and the library itself is

constructed using a linker. The linker, in addition to building the executable, can generate, many other files

containing useful information for the programmer. Similarly, the list file can also be generated by the tools,

which provides the disassembly of the code which is helpful to the programmer in debugging.

The MAP and list files optional outputs from the linker. Another important related concept is the

dynamic linking, where the libraries are not used at the time of building an executable, rather they are used

during the execution at runtime and are called dynamic link libraries or in short DLLs.

19 |Embedded systems

	Difference between the RISC and CISC Processors

