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Chapter 1

Rings

1.1 Rings and homomorphisms

Let R be a ring. We have an object (R,+,-,-). This object contains a set with 3 operations.
The operations are maps from RxR — R. The subset (R,+) is a commutative group, and
the subset (R,) is a semi-group or monoid. In the ring there is an element 0 such that Ox
= x0 = 0 for all x in R. In the ring there is also an identity element 1, with the property
that 1x = x1 = x for all x in R. The ring R also satisfies a distribution law with respect to
the operations of addition and subtraction.

Examples of rings:
1. Z,Q, R, C (note Q, R, and C are fields);

2. Zla], Qlal, Rlzl, Cla]
Definition 1.1.1. If R is a commutative ring, then R|[z] is the ring of polynomials over R:
Rlz] = {Zai:r:i | a; € R, with operations +, —, and - }
i=1
Definition 1.1.2. Let R{, R2 be two rings. A homomorphism from R; to R is a map
QZ5 " Ri1— Ro
which preserves the operations:
o +y)=ox)+ o),  dzy) = d(x)(y)

Definition 1.1.3. The kernel of a homomorphism ¢ : Ry — Rs is defined to be the preimage
of 0 and its denoted by Ker(¢).

Ker(¢) =¢7'(0) ={z € R | ¢(z) =0}



Note that Ker(¢) measures the injectivity of ¢.
Lemma 1.1.4. The homomorphism ¢ is injective if and only if ker¢ = 0.
Proof. The only if part is obvious. If ¢(z1) = ¢(x2) then ¢(x1 —x3) =0so 17 —xe = 0. O

The homomorphism ¢ can be factorized as a compoisition of surjective map and an
injective map

R L (Rl) — Ry

onto

The image ¢(R1) is a subring of Ry, while it is a quotient ring of R;.

Some notations

e Surjective map: —»

e injective map: — or —

1.2 Ideals and quotients

Now we want to study the structure of ker¢. Let kerg = I.

Property 1 Ifvr €I andy € I then x +y € I. Thus [ is an Abelian subgroup of R
under addition.

Property 2 Ifr € R andy € I then zy € I. Indeed

d(zy) = ¢(x)¢(y) = 0.
Note that if 1 € I, then ¢(1) = 0 which implies
¢(r) = ¢(x1) =0

for all x € R. Thus for the most part, we assume
Property 3 1 is notin I

Definition 1.2.1. Let I — R be a subset. We say I is an ideal if I satisfies two properties:
l.xel,yec limpliesx+yel
2. x€l,ye€ R implies xy € |

Theorem 1.2.2. A subset I of R is the kernel of a homomorphism ¢ ‘R — R', if and only
of 1 is an ideal.



Here is some machinery to start: Let R’ denote the quotient R/ ~ of R modulo the
relation ~: where
x1 ~ xy if and only if 2y —xo € 1.

Step 1. Show this is an equivalence: indeed,
r1—a90 €1, x9—123€ 1, then z;—x3€l.

Notation: let x € R. The class of z in R’ is denoted by x + [ or x (mod I).
Step 2. Define addition and multiplication on R':

(x1 (mod I))+ (z2 (mod I)) = (1 +22) (mod I)

(r1 (mod I))(zy (mod I)) = x1xs (mod I)

Step 3. Show R’ is a ring.
Step 4. Define a map
»:R—TR, ¢)==x (mod]I).

Show ¢ is a homomorphism and ker¢ = 1.

1.3 Special ideals and rings

We want to introduce some special ideals and rings through study of examples: Z, Q, R, C,

Z[x], Qx], R[x|, C[x].

Fields

Let I — Q be an ideal. If I is non-zero, then there is some non-zero element a € I. If a € I,
then a=! € I, so aa~! =1 € I. Thus the only ideal in Q not containing 1, is the zero ideal.
This leads us to the following definition:

Definition 1.3.1. A Field is a ring whose only ideal is the zero ideal.
Another definition could be:

Definition 1.3.2. A Field is a ring in which every non-zero element is invertible. That is
for all x € R there exists y € R such that xy = 1.

The equivalence of these two definitions is easy to see. If there were some non-zero ele-
ment ¢ € R that was not invertible, then (x) will be non-zero and (x) # R. If every non-zero
element of R is invertible then clearly the only ideal of R is the zero ideal.

It is clear that R and C are also fields.



