
1

VHDL

As the size and complexity of digital systems increase, they cannot be designed manually; their design

becomes highly complex. At their most detailed level, the circuit consists of millions of elements. So

Computer Aided Design (CAD) tools are used in the design of such systems. One such a tool is a Hardware

Description Language (HDL).

VHDL is an acronym for VHSIC Hardware Description Language (VHSIC- Very High Speed Integrated

Circuit). It is a hardware description language that can be used to model a digital system.

BASIC LANGUAGE ELEMENTS

The basic elements of the language are – data objects, literals and operators.

Data objects-that store values of a given type.

Literals represent constant values.

Operatorsoperate on data object.

Identifiers

An identifier in VHDL is a sequence of one or more characters. There are two types if identifiers.

1. Basic identifiers and

2. Extended identifiers.

A basic identifier composed of sequence of legal character is an upper-case letter (A... Z), or a lower-case

letter (a. .. z), or a digit (0 . . . 9) or the underscore (_) character.

Rules for naming an identifier:

1. The first character in an identifier must be a letter and the last character may not be an

underscore.

2. Lower-case and upper-case letters are considered to be identical when used in an identifier;

3. Also,-two underscore characters cannot appear consecutively .

Example: Count, COUNT, and CouNT,

DRIVE_BUS, SelectSignalRAM_Address

 SET_CK_HIGH CONST32_59 r2d2

An extended identifier is a sequence of characters written between two backslashes. Any of the
allowable characters can be used. Within an extended identifier, lowercase and uppercase letters are
considered to be distinct.

Example:
\TEST\, \-25\ , \2FOR$\ , \process\ etc.
Comments in a description must be preceded by two consecutive hyphens (--); the comment extends to

the end of the line.

The language defines a set of reserved words. These words are called keywords, have a specific meaning

in the language, and cannot be used as identifiers.

Data Objects
A data object holds a value of a specified type. It is created by means of an object declaration.

Constants Variables Signals Files

2

Data objects

There are four classes of data objects, namely

1. Constants

2. Variables

3. Signals and

4. Files.

1. Constant : An object of constant class can hold a single value of a given type. This value is assigned

to the object before simulation starts and the value cannot be changed during the course of the

simulation.

Syntax:

CONSTANTconst-name: TYPE [:= value];

Examples:

constantRISE_TIME: TIME := 10ns;
constantBUS_WIDTH: INTEGER := 8:
constantNO_OF_INPUTS: INTEGER;

 The first declaration declares the object RISE_TIME that can hold a value of type TIME predefined

and the value assigned to the object at the start of simulation is 10 ns.

 The second constant declaration declares constant BUS_WIDTH of type INTEGER with a value of 8.

 In the third declaration, the value of the constant has not been specified in this case. Such a

constant is called a deferred constant

2. Variable : An object of variable class can also hold a single value of a given type. But different

values can be assigned to the object at different times using a variable assignment statement.

Syntax:

VARIABLE var-name: TYPE [:= initial value];

Examples:

variableCTRL_STATUS: BIT_VECTOR(10 downto0);
variableSUM: INTEGER range Oto 100 := 10;

 The first declaration specifies a variable object CTRL_STATUS as an array of II elements, with each

array element of type BIT.

 In the second declaration, an explicit initial value has been assigned to the variable SUM. When

simulation starts, SUM will have an initial value of 10

3. Signal: signals are data objects in VHDL that are used to model interconnections and capable of

holding the list of values. An object belonging to the signal class has a past history of values, a

current value, and a set of future values. Future values can be assigned to a signal object using a

signal assignment statement. Signal objects can be regarded as wires in a circuit. Signal objects are

typically used to model wires and flip-flops while variable and constant objects are typically used

to model the behavior of the circuit.

Syntax:

SIGNAL sig -name: TYPE [:= initial value];

Composite

3

Examples:

signalCLOCK: BIT;
signalDATA_BUS: BIT_VECTOR(0 to 7);
signalGATE_DELAY: TIME := 10 ns;

The first signal declaration declares the signal object CLOCK of type BIT and gives it an initial value of '0'

('0' being the leftmost value of type BIT). The third signal declaration declares a signal object GATE_DELAY

of type TIME that has an initial value of 10 ns.

4. File : An object belonging to file class contains a sequence of values. Values can be read or written

Using file read procedures and write procedures.

Syntax:

FILE file-names : file-type-name[[open mode] is string-expression];

Examples:

file STIMULUS:TEXT open READ_MODE is “/usr/home/jb/add.sti”;

file VECTORS:BIT FILE is “/usr/home/james/add.vec”;

In the first example, a file STIMULUS is declared to be a predefined file type TEXT; that is a file may

contain indefinite number of strings. The mode value READ_MODE specifies that the file will be opened in

read only mode and the string expression keyword is specifies the path name.

In the second example, VECTORS is declared as a file, containing an indefinite number of bit

vectors. This declaration also specifies the link to the file in the host environment. Since no mode is

specified, the default mode, READ_MODE is used.

Data Types

VHDL has a set of standard data types (predefined / built-in). It is also possible to have user defined data
types and subtypes. i.e., in VHDL the data types can be classified into

1. Predefined type
2. User defined type

Some of the predefined data types in VHDL are: BIT, BOOLEAN and INTEGER.

The STD_LOGIC and STD_LOGIC_VECTOR data types are not built-in VHDL data types, but are defined in

the standard logic 1164 package of the IEEE library.

 BIT: it is the simplest and most important data type for a digital system based on the logic values

‘0’ and ‘1’. Any data object can be declared of the type bit before being used as Signal, Variable or

Constant

 Boolean: It is predefined type that has values TRUE & FALSE. Some of the predefined operators

are and,or,not,nand,nor.

 INTEGER: it is a predefined type with the set of values being integers in the range from

-(231 – 1) to + (231 -1).

Data types (user defined)

FLOATING POINT

File

ENUME
RATION

INTEGER PHYSI
CAL

RECORD ARRAY

4

1. Scalar types
2. Composite type

3. Access type
4. File type

1. Scalar Types

The values belonging to this type appear in sequential order. There are four different kinds of scalar types. These

types are

a. Enumeration

b. Integer

c. Physical

d. Floating point.

Integer types, floating point types, and physical types are classified as numeric types since the values associated

with these types are numeric.

a. Enumeration Types

An enumeration type declaration defines a type that has a set of user-defined values consisting of identifiers and
character literals. i. e., it can take value from a defined list. These values may be integers, identifiers or single
character literals.

SYNTAX:

TYPE nameIS

Examples :

Type MVL is ('U','0','1','Z);

Type BITis ('0','1');

TypeCAR_STATE is (STOP, SLOW, MEDIUM, FAST);
Type Boolean is (True ,False);

Type SEVERITY_LEVEL is (NOTE, WARNING, ERROR, FAILURE);

Type FILE_ OPEN_KIND is (READ_MODE, WRITE MODE , APPEND MODE);

Type FILE_ OPEN_KIND is (READ_MODE, WRITE MODE , APPEND MODE);

Summary of predefined enumerated data types

Type Range of values
Character ASCII characters, characters must be placed between single quotes.

Bit ‘0’ , ‘1’

Bit_vector An array with each element of type bit

Boolean FALSE, TRUE

File_open_kind Read_mode, write_mode, append_mode

File_open_status Open_ok, status _error, mode_error

Severity level Note, Warning, Error, and Failure

b. Integer Types

An integer type defines all integer values whose set of values fall within the specified range. The values can be

positive or negative. The range of the INTEGER type is in the range -(2^ 31 - 1) to +(2^31 - 1).

5

Values belonging to an integer type are called integer literals. Examples of integer literals are

56349 6E2 0 98_71_28

Literal 6E2 refers to the decimal value 6 * (10^2) = 600. The underscore (_) character can be used freely in writing

integer literals and has no impact on the value of the literal; 98_71_28 is same as 987128.

c. Floating Point (Real) Types:

A floating point type has a set of values in a given range of real numbers.

SYNTAX:

TYPEreal_rangeISrange

Example:

typeTTL_VOLTAGE is range -5.5 to -1.4;

typeREAL_DATA is range 0.0 to 31.9;

variableLENGTH: REAL_DATA range 0.0 to 15.9;

Floating -point literals are values of a floating point type. Examples of floating point literals are

16.26 0.00.002 3_1.4_2

(Floating point literals differ from integer literals by the presence of the dot (.) character. Floating point literals can

also be expressed in an exponential form. The exponent represents a power of ten and the exponent value must be

an integer. Examples are

62.3 E-2 5.0 E+2

Integer and floating point literals can also be written in a base other than 10 (decimal). The base can be any

value between 2 and 16. Such literals are called based literals. In this case, the exponent represents a power of the

specified base. The syntax for a based literal is

base# based-value # -- form 1

base# based-value # E exponent -- form 2

d. Physical Types

A physical type contains values that represent measurement of some physical quantity, like time, length, voltage,

and current. Values of this type are expressed as integer multiples of a base unit.

Example:

1. type CURRENT is range 0 to 1 E-9

units

nA; -- (base unit) nano-ampere
uA = 1000 nA; -- micro-ampere
mA = 1000 μA; --milli-ampere
Amp = 1000 mA; -- ampere
end units;

2. type TIMEis range 0 to -1 E18 to 1 E18

units

pS; -- (base unit) Pico Sec
nS = 1000pS;
µS = 1000nS;
mS = 1000µS;
Sec= 1000mS
Min= 60Sec
end units;

CURRENT is defined to be a physical type that contains values from 0 nA to 10^9 nA. The base unit is a nano-

ampere while all others are derived units.

2. Composite Types

A composite type represents a collection of values of similar or different type. There are two types:

 An array type and

 A record type.

6

2a. Array types:

Array is used to represent an object containing more than one values of similar type. For example, a register of

eight bits can be represented as an object of the type array consisting of eight-bit values. So, eight values of type

bit are grouped into a single object of the type array.

Example:
typeADDRESS_WORD is array (0 to 63) of BIT;
typeDATA_WORD is array (7 downto0) of MVL;
typeDECODE_MATRIX is array (POSITIVE range 15 downto1,

Address-Bus is one dimensional array object type that consists of element of type BIT.
Decode _Matrix is array of positive range 15 down to 1

2b. Record Types
Record type is used to group objects of different type together which can be referenced as a single group.

1. type MODULE is
record
SIZE: INTEGER range 20 to 200;
CRITICAL_DLY: TIME;
NO_INPUTS: PIN_TYPE:
NO_OUTPUTS: PIN_TYPE;
end record;

2. type DATEis
record
DAY: integer_range 1 to 31;
MONTH:month_name;
YEAR:integer_range0 to 4000;
end record;

3. type FORECASTis
record
Temp: integer_range20 to 200;
Day: Real;
Condition: Boolean;
end record;

Values can be assigned to a record type object using a single assignment statement.

3. Access Types

Access type points to address a particular type of object and is useful for accessing dynamically allocated objects.

Examples:

typePTR is access MODULE;

typeFIFO is array (0 to 63, 0 to 7) of BIT;

PTR is an access type whose values are addresses that point to objects of type MODULE.

4. File Types:
A file is a stream of values of specified type which can be read or written during simulation. Files belong to special

kind of data type called “file type”.

Syntax

typefile-type-name Is file of type-name,

The type-name is the type of values contained in the file.

Examples.

typeVECTORS is file of BIT_VECTOR;

typeNAMES is file of STRING;

A file of type VECTORS has a sequence of values of type BIT_VECTOR; a file of type NAMES has a sequence of

strings as values in it.

7

OPERATORS

An operator is a logical or mathematical function which takes one or two values and produces a single result.

The predefined operators in the language are classified into the following five categories:

1. Logical operators

2. Relational operators

3. Shift operators.

4. Adding operators

5. Multiplying operators

6. Miscellaneous operators

The precedence of operators are from (6) to (1). That is, the miscellaneous operators have highest precedence

while logical operators have lowest precedence. Operators in the same category have the same precedence and

evaluation is done left to right. Parentheses may be used to override the left to right evaluation.

1. Logical Operators

The seven logical operators are

And or nand nor xorxnor not

These operators are defined for the predefined types BIT and BOOLEAN and one-dimensional arrays of BIT and

BOOLEAN. During evaluation, bit values '0' and 1' are treated as FALSE and TRUE values of the BOOLEAN type,

respectively. The result of a logical operation has the same type as its operands. The not operator is a unary logical

operator and has the same precedence as that of miscellaneous operators.

2. Relational Operators

These are

= /= <<=>>=

The result types for all relational operations are always BOOLEAN (TRUE or FALSE). The = (equality) and the /=

(inequality) operators are permitted on any type except file types. The remaining four relational operators are

permitted on any scalar type.

 For example,

BIT_VECTOR'('0', '1', '1') < BIT_VECTOR'('1', '0', '1')

is true, since the first element in the first array aggregate is less than the first element in the second aggregate.

3. Shift Operators: These are

sllsrlslasrarolror

Each of the operators takes an array of BIT or BOOLEAN as the left operand and an integer value as the right

operand and performs the specified operation.

a) sll – (shift left logical):

It is a logical shift operation which shifts the bits to left and thus the vacated bits on the right are filled with zeros.

Example:

a<= 101001 ;b<= a sll 2 = 100100

b) srl – (shift right logical):

It is a logical shift operation which shifts the bits to right and thus the vacated bits on the left are filled with zeros.

Example:

a<= 101001; b<= a srl 2 = 001010

c) sla – (shift left arithmetic):

It is an arithmetic shift operation which shifts the bits to left and thus the vacated bits on the right are

replicated with leftmost bit. (Filled value is right hand bit)

8

Example:

a<= 101001

b<= a sla2 = 100111

d) sra– (shift right arithmetic):

It is an arithmetic shift operation which shifts the bits to right and thus the vacated bits to left are

replicated with leftmost bit. (Filled value is left hand bit)

Example:

a<= 101001 ;b<= a sra 2 = 111010

e) rol – rotate left:

It is a circular rotation operation which rotates the bits to left.

Example:

a<= 101001; b<= a rol 2 = 100110

f) ror – rotate right:

It is a circular rotation operation which rotates the bits to right.

Example:

a<= 101001; b<= a ror 2 = 011010

4. Adding Operators

These are

+ -&

The operands for the + (addition) and - (subtraction) operators must be of the same numeric type with the result

being of the same numeric type. The operands for the & (concatenation) operator can be either a

I-dimensional array type or an element type.

Example,

'0' & '1' results in an array of characters "01".

'C' & 'A' &'T' results in the value "CAT".

"BA" & "LL" creates an array of characters "BALL".

5. Multiplying Operators

These are

* / mod rem

Multiplication and Division: The * (multiplication) and / (division) operators are binary operators in which both the

operandsare of the same integer or floating point type. The result is also of the same type.

Remainder (rem): The rem (remainder) is a binary operator which returns the remainder of the division of two

integer values. The result is also of the same type, but the sign of the first operand.

A rem B = A - (A / B) * B

Example:

9

Modulus (Mod):The mod operator is a binary operator which works on integer values . The result of a mod

operator has the sign of the second operand and is defined as

A mod B = A – B * N -For some integer N.

Example:

N is the smallest value for which the result is that of the second operand.

6. Miscellaneous Operators

The miscellaneous operators are

abs**

The abs (absolute) operator is defined for any numeric type.

The ** (exponentiation) operator is defined for the left operand to be of integer or floating point type and

the exponent operator for the integer type only.

Operator priority:

Miscellaneous operators ** | abs | not[Highest Precedence]

Multiplying Operators * | / | mod | rem

Adding Operators + | - | &

Shift Operators sll | srl | sla | sra | rol | ror

Relational Operators = | /= | < | <= | > | >=

Logical Operators and | or | nand| nor | xor | xnor [Lowest Precedence]

1

BEHAVIORAL MODELING

In behavioral style of modeling the behavior of the entity is expressed using sequentially executed,

procedural type code. The key features of this modeling are -

 The behavioral modeling describes the system by showing how the outputs behave according to

the changes in the inputs.

 While describing in the behavioral modeling, it is not necessary to know the logic diagram of

the system but it is required to know how the output behaves in response to the change in the

input.

 In VHDL, process is the main behavioral description statement .

 The statements inside the process are sequential.

Sequential Vs concurrent statements:

 Sequential statements are those statements, where the order or sequence of writing the statements is

important and defines the step by step execution, followed one after the other.

In concurrent style of modeling the digital circuit, the order of statements is not important. Data flow

and structural style modeling follow concurrent statements.

Every entity is represented using an entity declaration and at least one architecture body.

Entity Declaration:
An entity declaration describes the external interface of the entity, that is, it gives the black-box view. It

specifies the name of the entity, the names of interface ports, their mode (i.e., direction), and the type of

ports. The syntax for an entity declaration is

entity entity-name is
[generic (list-of-generics-and-their-types) ;]

 [port (list-of-interface-port-names-and-their-types) ;]
[entity-item-declarations]

[begin
entity-statements]

 end [entity-name];

The entity-name is the name of the entity and the interface ports are the signals through which the entity

passes information to and from its external environment. Each interface port can have one of the

following modes:

1. in: Unidirectional port, indicating that the signal is an input and data can be written to.

2. out: Unidirectional port, indicating that the signal is an output of an entity whose value can be read.

The value of an output port can only be updated within the entity model; it cannot be read.

3. inout: the value of a bidirectional port can be read and updated within the entity model.

2

4. buffer: the value of a buffer port can be read and updated within the entity model.

Example:
Consider an And-Or-Invert (AOI) circuit is shown in Fig. and its corresponding entity declaration is

entity AOI is

port (A, B, C, D: in BIT; Z: out BIT);

end AOI;

The entity declaration specifies that the name of the entity is AOI and that it has four input signals of

type BIT and one output signal of type BIT.

Architecture Body
An architecture body describes the internal view of an entity. It describes the structure of the entity.

Architecture consists of two portions:

 Architecture declaration and

 Architecture body.

 The syntax of an architecture body is

architecture architecture-name of entity-name is

[architecture-item-declarations]

begin

Concurrent-statements; these are —>

 Process-statement

Block-statement

Concurrent-procedure-call

Concurrent-assertion-statement

Concurrent-signal-assignment-statement

Component-instantiation-statement

generate-statement

 end [architecture-name] ;

The architecture name is a user defined name of the architecture body. It can be same as entity name or
different.

Process Statement

D

C

B

A

Z

3

A process statement contains sequential statements that describe the functionality of a portion of an
entity in sequential terms. The syntax of a process statement is

[process-label:] process [(sensitivity-list)]
[process-item-declarations]

begin
sequential-statements; these are ->

variable-assignment-statement

signal-assignment-statement

wait-statement

if-statement

case-statement

loop-statement

null-statement

exit-statement

next-statement

assertion-statement

procedure-call-statement

return-statement.

end process [process-label];

Sensitivity list:

Sensitivity list is the set of signals to which the process is sensitive to (responsive). i.e., whenever an

event occurs on any one of the signals in the sensitivity list, process comes into execution. The process

is suspended only after executing all the statements inside the process in sequence.

For eg:

 Any change in the state of any element of the sensitivity list s treated as an event. The process is

activated (initiated) on if an event occurs; otherwise process remains inactive. If the process has no

sensitivity list, the process is executed continuously.

Variable Assignment Statement

Variables are the class of VHDL objects allowed only with the sequential style of modeling. Variables

are objects that are used for the local storage within a process and subprogram alone. Inside a process

local variables can be declared in the declarative part before the keyword begin to represent its local

temporary values.

Consider the behavior model of AND gate. The signals A,B are included in the

sensitivity list. So whenever the value of ‘A’ or ‘B’ or both changes from ‘0’ to ‘1’ or ‘1’

to ‘0’ , the process will start execution and the output of the gate is updated

according to the expression C <= A and B;

4

The first statement of the process statement is the variable assignment statement that assigns a value to

variable temp. Variables can be declared and used inside a process statement. A variable is assigned a

value using the variable assignment statement that typically has the form

Variable-object : = expression;

Differences between Signals and Variables

Signals Variables
1. 1.These are VHDL objects used to

represent wires and interconnections
These are temporary storage in VHDL

2. .Values of signals are updated only
after default delta delay or specified
user delay

Values of variables are updated immediately
on the execution of variable assignment
statement.

3. Require event scheduling and
synchronizing of signal drivers.

No event scheduling and synchronizing is
required.

4. Consume more memory space Consume less memory space
5. Use of signals is allowed in styles of

modeling
Variables are used only in behavioral modeling

6. Assignment operator is <= Assignment operator is :=

[Write the VHDL code for the AOI circuit using Behavioral modeling].
entity AOI is

port (A, B, C, D: in BIT; Z: out BIT);
end AOI;

architecture AOI of AOI is
begin

process (A, B, C, D)
variable TEMPI ,TEMP2: BIT;
begin

TEMP1 := A and B;
TEMP2:=C and D;
TEMP1 := TEMP1 or TEMP2;
 Z<= not TEMP1;

end process;
end AOI_SEQUENTIAL;

VHDL Behavioral description of Half adder

S

C

5

entity half adder is
port (A : in bit; B : in bit;
 Sum : out bit Cout : out bit);
end half_adder;

architecture adder of half_adder is
begin
 processs (A, B)
 begin
 sum <= A xor B after 10ns; -- signal assignment statement 1
 cout < = A and B after 10ns -- signal assignment statement 2
 -- with 10ns delay
 end process
end adder;

Variable Assignment Statement: Examples

Write the VHDL code for two input nand gate using Behavioral modeling

 Architecture nand2 of nand2 is
Begin

Process (A,B)

Begin
if A='1' and B='1' then
C<= '0';
 else
C <= '1';
End if;
End process;
End behavioral;

Write the VHDL code for D-latch using Behavioral modeling
entity D_latch is

Port (D, Clk : in bit;
 Q , Qbar : out bit);
end D_latch;

Entity nand2 is

Port (A : in bit;

 B: in std-logic ;

 C : out std-logic);

End nand2;

6

architecture behaviour of D_latch is
begin

process (D , Clk)
variable temp1 , temp2 : bit;
If Clk = ‘1’ then
temp1 := D; --variable assignment statement.
temp2 := not temp1; --variable assignment statement.

end if ;
Q <= temp1; -- value of temp1 is assigned to Q

 Qbar <= temp2; -- value of temp2 is assigned to Qbar.
end process;
end D_latch;

Signal Assignment Statement:
A signal assignment statement can appear within a process or outside of a process. If it occurs

outside of a process, it is considered to be a concurrent signal assignment statement. When a signal

assignment statement appears within a process, it is considered to be a sequential signal assignment

statement and is executed in sequence with respect to the other sequential statements that appear within

that process.

When a signal assignment statement is executed, the value of the expression is computed and this

value is scheduled to be assigned to the signal after the specified delay. If no delay is specified, the

delay is assumed to be a default delta delay.

The syntax is
Signal-object <= expression [after delay-value];

Example:
COUNTER <= COUNTER+ "0010"; - Assign after a delta delay.

 PAR <= PAR xor DIN after 12 ns;
 Z <= (A0 and A1) or (B0and B1) or (C0 and C1) after 6 ns;

Write the VHDL code for D-latch using Behavioral modeling:
entity D_latch is
Port (D, En : in bit;
 Q : buffer bit;
 Qbar : out bit);
end D_latch;
architecture DL of D_latch is
begin
 If En = ‘1’ then

Q <= D;
 Qbar <= not Q;
 end if ;
end process;
end DL;

7

Delta Delay

A delta delay is a very small delay. This delay models hardware where a minimal amount of time is

needed for a change to occur. Delta delay allows for ordering of events that occur at the same simulation

time during a simulation. Each unit of simulation time can be considered to be composed of an infinite

number of delta delays. Therefore, an event always occurs at a real simulation time plus an integral

multiple of delta delays.

 For example, events can occur at 15 ns, 15 ns+IA, 15 ns+2A, 15 ns+3A,
 22 ns, 22 ns+A, 27 ns, 27 ns+A, and so on.

Consider the AOI architecture
architecture AOI of AOI is
begin

process (A, B, C, D)
variable TEMPI ,TEMP2: BIT;
begin

TEMP1 := A and B; -- statement 1
TEMP2:= C and D; --statement 2
TEMP1 := TEMP1 or TEMP2; -- statement 3
 Z<= not TEMP1; --statement 4

end process;
end AOI_SEQUENTIAL;

 Let us assume that an event occurs on input signal D (i.e., there is a change of value on signal D) at

simulation time T. Statement I is executed first and TEMPI is assigned a value immediately since it is a

variable. Statement 2 is executed next and TEMP2 is assigned a value immediately. Statement 3 is

executed next which uses the values of TEMPI and TEMP2 computed in statements I and 2,

respectively, to determine the new value for TEMPI. And finally, statement 4 is executed that causes

signal Z to get the value of its right-hand-side expression after a delta delay, that is, signal Z gets its

value only at time T+A; this is shown in Fig.

 D

 Z

Sequential statements:

The sequential statements exist inside the boundaries of a process statement as well as sub-programs.
These are-

8

1. The variable assignment statement
2. the signal assignment statement
3. wait statement
4. if statement
5. Case statement

6. Null statement
7. loop statement
8. Exit statement
9. Next statement
10. Assertion statement

11. Report statement.

Wait Statement:

The wait statement is a statement that causes suspension of a process or a procedure.
WAIT statement exists in three forms as follows.
1. wait on signal_list;

Eg: wait on S1, S2;
The process will be suspended on the wait statement and will be resumed when one of the S1 or S2
signals changes its value.

2. wait until condition;
Eg: wait until Enable = '1';
The wait statement will resume the process when the Enable signal changes its value to '1'.

3. wait for time;
Eg: wait for 50 ns;
A process containing this statement will be suspended for 50 ns.

4. WAIT FOR 0:
Syntax : Wait for 0ns
It means to wait for one delta cycle. This is a useful statement when the process is to be delayed.
For e.g.:
Wait 0: process
Begin
Wait on data
Sig_A <= data;
Wait for 0 ns;
Sig_B <= Sig_A;
End process;
The Wait for 0ns causes the process to suspend for 1Δ. SIG_A gets updated with its new value. Process
resumes at 10 + 1Δ. SIG_B gets the new value of SIG_A at 10 + 2Δ. This is as shown below.

Data

SIG_A

If Statement:

SIG_B

9

The if statement is a statement that depending on the value of one or more corresponding conditions,
selects for execution one or none of the enclosed sequences of statements, IF statement exists in three
forms.

1. if boolean-expression then
 sequential-statements
 end if;

Example1:

 if SUM <= 100 then
SUM := SUM+10; end if;

Example2: Execution of nor gate:

entity NOR2 is
 port (A, B: in BIT; Z: out BIT);

 end NOR2;
 architecture behaviour of NOR2 is
begin

process (A, B)
 constant RISE_TIME: TIME := 10 ns;
 constant FALL_TIME: TIME := 5 ns:
 variable TEMP: BIT;
 begin
 TEMP := A nor B;
 If (TEMP = '1 ') then
 Z <= TEMP after RISE_TIME;

 else
 Z <= TEMP after FALL_TIME;

 end if;
 end process;

 end Behaviour;

2. if boolean-expression then
 sequential-statements
 elsif

 boolean-expression then
 sequential-statements
 else

 sequential-statements
 end if;

Example: Execution of D flip-flop:

A B
Y =
A+B

0 0 1
0 1 0
1 0 0
1 1 0

10

Entity dff is
PORT (d, clk, rst : in-std-logic;
 Q, qbar: out-std-logic);
End dff;
Architecture behavior of dff is

Begin
Process(rst, clk)

Begin
If rst = ‘0’ then
Q = ‘0’;
elsif clk ‘event and clk =’1’ then
Q = ‘d’;
End if;

End Process;
End behavior;

3 if boolean-expression then
 sequential-statements
 else
 sequential-statement
 end if;

Example: Execution of 4 bit up counter

Entity counter is
Port(E,clk,rst : in_std_logic;
Count: inout std_logic_vector (3 down to 0);

 End counter;

Architecture behavior of counter is
Begin

Process(rst, clk)
Begin
If rst = ‘0’ then

 Count <= “0000”;
elsif clk ‘event and clk =’1’ then

 Count <= count +1;
 Else
 Count <= count;

End if;
End Process;
End behavior;

The if statement is executed by checking each condition sequentially until the first true condition is
found; then, the set of sequential statements associated with this condition is executed. The if statement

4 X 1 MUXA
B
C
D

Z

CTRL

2 x 4 decoderI Y

3

11

can have zero or more elsif clauses and an optional else clause. An if statement is also a sequential
statement, and therefore, the previous syntax allows for arbitrary nesting of if statements.
(Refer more programs in ‘Godse’)

 Case Statement:

The syntax is
case expression is

when choices => sequential-statements
when choices => sequential-statements
[when others => sequential-statements]

.

.

..
end case;

The CASE statement executes the proper statement depending on the value of the input instruction. If

the value of the instruction is one of the choices listed in the WHEN clauses then the statement

following the when clause is executed.

If the value of the expression is outside the range of the choices given, then the expression following the

OTHERS clause is executed.

Examples:

Write the VHDL code for MUX.
entity MUX is

port (A, B, C, D: in BIT;
CTRL: in BIT_VECTOR(0 to 1);

Z: out BIT);
end MUX;
architecture BEHAVIOR of MUX is
begin

process (A, B, C, D, CTRL)
begin

case CTRL is
when "00" => Z:= A:
when "01" => Z := B;
when "10" => Z := C;
when "11" => Z := D;
end case;

end process
end BEHAVIOR;

Write the VHDL code for DECODER (2 x 4 decoder).

Entity decoder is 1

Ctrl lines Inputs

S0 S1 D C B A
0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

0 0

Encoder 4 X 2
A B

0

3

0

1

12

Port (I : in std-logic-vector (1 downto 0);
 y : out std-logic-vector (3 downto 0));
End decoder;

Architecture behavioral of decoder is
Begin
Process (I)
Case I is
When “00” => y := “0001”,
When “01” => y := “0010”,
When “10” => y := “0100”,
When “11” => y := “1000”,
Ende case;
End behavioral ;

VHDL code for ENCODER (4 x 2 encoder).

entity encoder is

Port (A: in STD_LOGIC_ VECTOR (3 Down to 0);

 B: out STD_LOGIC_VECTOR (1 Down to 0));

end encoder;

architecture Behavioral of encoder is

begin

process (A)

begin

case A is

When “0001” =>B <= “00”;

When “0010” =>B <= “01”;

When “0100” =>B <= “10”;

When “1000” =>B <= “11”;

 When others =>B <= “00”;

end case;

end process;

end Behavioral;

Null Statement
The statement NULL is a sequential statement that does not cause any action to take place and

execution continues with the next statement.

INPUTS OUTPUTS

A(3) A(2) A(1) A(0) B(1) B(0)

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 0 1 1

Ctrl lines Inputs

I1 I0 Y3 Y2 Y1 Y0

0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

2 x 4 decoderI Y

0

3

0

13

 It can be used to indicate that when some conditions are met, no action is to be performed. Such an

application is useful in particular in conjunction with case statements to exclude some conditions.

Example:

Write the VHDL code for DECODER (2 x 4 decoder).

Entity decoder is
Port (I : in std-logic-vector (1 downto 0);
 y : out std-logic-vector (3 downto 0));
End decoder;

Architecture behavioral of decoder is
Begin
Process (I)

Case I is
When “00” => y := “0001”,
When “01” => y := “0010”,
When “10” => y := “0100”,
When “11” => y := “1000”,
when others => null;
End case;

End Process:
End behavioral ;

Loop Statement:
Loop is a sequential statement. The LOOP statement is used whenever an operation needs to be

repeated. Loop statements are used for iteration is needed in a model.

The syntax of a loop statement is

[loop-label :] iteration-scheme loop

sequential-statements

end loop [loop-label] ;

There are three types of iteration schemes.

 for iteration scheme.

FOR identifier In range LOOP

Statements;

END LOOP;

 while iteration scheme.

WHILE condition LOOP

Statements;

1

Ctrl lines Inputs

I1 I0 Y3 Y2 Y1 Y0

0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

14

END LOOP;

 The third form no iteration scheme is specified.

LOOP

Statements;

END LOOP;

For Loop:
The FOR-LOOP statement is used whenever an operation needs to be repeated.
The for loop defines a loop parameter which takes on the type of the range specified.

for identifier in range
Example:

Write the VHDL code for factorial of a number using FOR LOOP:

 Entity fact is
PORT (clk: in-std-logic;
 Factorial : out-integer);
End fact;

Architecture behavioral of fact is
Begin
Process (clk)

Begin
FACTORIAL := 1;
If clk ‘event and clk =’1’ then
for NUMBER in 2 to N loop

FACTORIAL := FACTORIAL * NUMBER;
End loop;
End IF;
End Process

End behavioral;
The body of the for loop is executed (N-1) times, with the loop identifier, NUMBER, being
incremented by I at the end of each iteration.

While Loop:
WHILE loop differs from FOR loop as it repeats the sequential statements until a particular condition

is met with. The syntax is

while boolean-expression

Example:
J:=0;SUM:=10;

while J < 20 loop

SUM := SUM * 2;

15

J:=J+3;

end loop;

The statements within the body of the loop are executed sequentially and repeatedly as long as the loop

condition, J < 20, is true. At this point, execution continues with the statement following the loop

statement.

The third and final form of the iteration scheme is one where no iteration scheme is specified . In this

form of loop statement, all statements in the loop body are repeatedly executed until some other action

causes it to exit the loop. These actions can be caused by an exit statement, a next statement, or a return

statement

Example:
SUM:=1;J:=0;

L2: a label loop
J:=J+21;
SUM := SUM* 10;
exit when SUM > 100;

end loop L2;

In this example, the exit statement causes the execution to jump out of loop L2 when SUM becomes
greater than 100. If the exit statement were not present, the loop would execute indefinitely.

Exit Statement
The EXIT statement is a sequential statement that can be used only inside a loop. It is used to jump out

of the loop conditionally or unconditionally and terminate the loop. The LOOP label in the EXIT

statement identifies the particular loop to be exited

exit [loop-label] [when condition]:

If no loop label is specified, the innermost loop is exited

Example:
SUM := 1; J := 0;
L3: loop

J:=J+21;
SUM := SUM* 10;
if (SUM > 100) then

exit L3;
end if;

end loop L3;

Next Statement
The next statement is used to complete execution of one of the iterations of an enclosing loop statement.

The completion is conditional if the statement includes a condition.

16

 Its syntax is

next [loop-label] [when condition];

Example:
for J in 10 downto 5 loop

if (SUM < TOTAL_SUM) then

SUM := SUM +2;

elsif (SUM = TOTAL_SUM) then

next;

else

null;

end if;

The difference between the Next statement and exit statement is that- the exit statement "exits" the loop
entirely, while the next statement skips to the "next" loop iteration

Assertion Statement
Assertion statement checks whether a specified condition is true and reports an error if it is not.
The syntax is

assert boolean-expression

[report string-expression]

[severity expression]:

The assertion statement has three optional fields and usually all three are used.

The condition specified in an assertion statement must evaluate to a Boolean value

(true or false). If it is false, it is said that an assertion violation occurred.

The expression specified in the report clause must be of predefined type STRING and

is a message to be reported when assertion violation occurred.

If the severity clause is present, it must specify an expression of predefined type

SEVERITY_LEVEL, which determines the severity level of the assertion violation.

Example:
Functional errors, timing errors can be reported via assert:
entity RSFF is

port(R,S, rst, CLK: in std_logic;

Q,Qbar: out std_logic);

End RSFF;

Architecture behavioral of RSFF is
begin

 process (CLK , R,S)
begin

if (CLK‘ event and clock = ‘1’) then

17

assert (S =’1’ and R =’1’);

report “Undefined status ”

severity Error;

end if;

end process;

end behavioural;

Report statement:
A report statement can be used to display a message. It is similar to an assertion statement but without

the assertion check. The syntax is

report string expression

[severity expression];

When report statement is executed, it causes the specified string to be printed and the severity level to be
reported to the simulator for appropriate action.

Examples:
1. if CLR = ‘Z’ then

report “signal CLR has a high impedance value”;
end if;

2. if CLK /= ‘0’ and CLK /= ‘1’ then
report “CLK is neither ‘0’ nor ‘1’ ”;
severity ERROR;
end if;

More on Signal Assignment Statement:
Delay is the time gap between the giving the value at the input and the time at which the change due to

input is reflected at the output. By default, the propagation delay of the circuit is present but VHDL

gives the user the flexibility to specify the delay to manage the correct updation of values in case of

concurrent statements which are all executed in parallel. There are two types of delay models in VHDL.

 Inertial and

 transport

Inertial Delay Model:

Inertial delay models the delays found in switching circuits. It represents the minimum

length of time for which an input value must be stable change at the output. In addition, the value

appears at the output after the specified delay. If the input is not stable for the specified time, no

output change occurs.

The syntax is

Signal –object<= [[reject pulse-rejection-limit] inertial] expression after inertial-delay-value;

5 8 10 25 4528 30 48

4020

5 8 10 25 4528 30 48

15 18 20 35 5538 40 58

18

If no pulse rejection limit is specified, the default pulse rejection limit is the inertial delay value itself.

Example:
Consider a non-inverting buffer with an inertial delay of 10 ns.
Ie., Z = reject 4 ns inertial A after 10 ns

A

 Z

Events on signal A that occur at 5 ns and 8 ns are not stable for the inertial delay duration and hence do

not propagate to the output. Event on A at 10ns remains stable for more than the inertial delay, and

therefore, the value is propagated to the target signal Z after the inertial delay; Z gets the value 1' at 20

ns. Events on signal A at 25ns and 28 ns do not affect the output since they are not stable for the inertial

delay duration. Transition 1' to '0' at time 30 ns on signal A remains stable for at least the inertial delay

duration, and therefore, a '0' is propagated to signal Z with a delay of 10 ns; Z gets the new value at 40

ns. Other events on A do not affect the target signal Z.

Since inertial delay is most commonly found in digital circuits, it is the default delay model. This delay

model is often used to filter out unwanted spikes and transients on signals.

Transport Delay Model
 In Transport delay model the change in the input are transported to the output. The only delay that

comes into play is the propagation delay and there is pulse rejection limit. The syntax is

Transport expression after inertial-delay-value;

Example:
Consider a non-inverting buffer with a transport delay of 10 ns.

A

A Z Z

In this case, spikes would be propagated through instead of being ignored as in the inertial delay case.

19

Differences between Inertial delay and Transport delay:

Inertial delay Transport delay
1. This models propagation delay due to

components as well as pulse rejection width.
This models delay due to wires or
interconnections.

2. Any pulse whose duration is smaller than the
propagation delay is not allowed to reach the
output.

This delay allows every change to reach the
output.

3. This most commonly used Not very commonly used. .

Creating Signal Waveforms:
It is possible to assign multiple values to a signal, each with a different delay value.
 For example,

PHASE1 <= '0', '1' after 8 ns, '0' after 13 ns, '1' after 50 ns;
When this signal assignment statement is executed, say at time T, it causes four values to be scheduled
for signal PHASE l , the value '0' is scheduled to be assigned at time T+A, 1' at T+8 ns, '0' at T+13 ns,
and 1' at T+50 ns. Thus, a waveform appears on the signal PHASE l as shown in Fig.

 T T+8 T+13 T+50 ns
The syntax of signal assignment statement is

Signal –object<= [transportǀ [reject pulse-rejection-limit] inertial] waveform-element;

Each waveform element has a value part, specified by an expression (called the waveform expression in
this text), and a delay part, specified by an after clause that specifies the delay. The delays in the
waveform elements must appear in increasing order. A waveform element is of the form

expression after time-expression

Signal Drivers:
The effective value of a signal, if there is more than one assignment to the same signal

within a process, can be obtained by creating the drivers.
 Every signal assignment in a process creates a driver for that signal. The driver of a signal holds its
current value and all its future values as a sequence of one or more transactions, where each transaction
identifies the value to appear on the signal along with the time at which the value is to appear.
Example:

process
begin
. . .

RESET <= 3 after 5 ns, 21 after 10 ns, 14 after 17 ns;
end process;

RESET curr@now 3@T+ 5ns 21@T + 10ns 14@T + 17ns

20

All transactions on the driver are ordered in increasing order of time

In the above example, when the signal assignment statement is executed, say at time T, three new

transactions are added to the driver for the RESET signal. The first transaction is the current value of the

signal.

When simulation time advances to T+5 ns, the first transaction is deleted from the driver and RESET

gets the value of 3. When time advances to T+I0 ns, the second transaction is deleted and RESET gets

the value of 21. When time advances to T+17 ns, the third transaction is deleted and RESET gets the

value of 14.

Effect of Transport Delay on Signal Drivers
Consider an example of a process having three signal assignments to the same signal RX_DATA.

signal RX_DATA: NATURAL;
. . .
process
begin

RX_DATA <= transport 11 after 10 ns:
RX_DATA <= transport 20 after 22 ns;
RX_DATA <= transport 35 after 18 ns;

end process;
Assume that the statements are executed at time T. The transactions on the driver for RX_DATA are

created as follows.

 When the first signal assignment is executed, the transaction, 11@T+10 ns, is added to the driver. After

the second signal assignment is executed, the transaction, 20@T+ 22 ns, is appended to the driver since

the delay of this transaction (= 22 ns) is larger than the delay of the pending transactions on the driver.

The driver for RX_DATA looks like this

When the third signal assignment statement is executed, the new transaction, 35@T+18 ns, causes the
20@T+22 ns transaction to be deleted and the new transaction is appended to the driver. Because the
delay for the new transaction (=18 ns) is less than the delay of the last transaction sitting on the driver
(=22 ns). This effect is caused because transport delay is used. In general, a new transaction will delete
all transactions sitting on a driver that are to occur at or later than the delay of the new transaction.
Therefore, the driver for RX_DATA is changed to

Effect of Inertial Delay on Signal Drivers

RX_DATA

RX_DATA

Curr @ now 11@T+ 10ns 20@T + 22ns

Curr @ now 11@T+ 10ns 35@T + 18ns

21

When inertial delays are used, both the signal value being assigned and the delay value

affect the deletion and addition of transactions. If the delay of the new transaction is earlier than

an existing transaction, the latter is deleted and the new one is added at the end of the driver,

regardless of the signal values of the two transactions

On the other hand, if the delay of the new transaction is greater than an already existing

one, the signal values of the two transactions are compared. If they are the same, the new

transaction is simply added at the end of the driver, if not, the existing one is deleted before

adding the new transaction. Deletion occurs for every existing transaction with a signal value

that is different from the new transaction.

Example:
Consider the following process statement.
process
begin

TX_DATA <= 11 after 10 ns;
TX_DATA <= 22 after 20 ns;
TX_DATA <= 33 after 15 ns;
wait; -- Suspends indefinitely.

end process;

The transaction, 11@10 ns, first gets added to the driver. The second transaction, 22@20 ns, causes the
11@10 ns transaction on the driver to be deleted because the signal value, that is, 22, of the new
transaction is different from the value of the transaction on the driver, that is, 11. The state of the driver
at this point is

The execution of the third signal assignment causes the transaction 22@20 ns to be deleted from the
driver, since the delay of the new transaction (=15 ns) is less than the delay of the transaction on the
driver (similar to the transport delay case). The final status of the driver is

TX_DATA

TX_DATA curr@now 22@ 20ns

curr@now 35@15ns

Full Adder

B

A

Cin
Cout

S

Dataflow Modeling

Dataflow modeling describes the architecture of the entity under design without describing its components in
terms of flow of data from input towards output. This style is nearest to RTL description of the circuit.
Dataflow modeling is concurrent style of modeling in VHDL, that is, unlike behavioral modeling the order of
statements is not important

Example 1: Two input OR gate

.

In this example, the architecture body contains a single concurrent signal assignment statement. The
interpretation of this statement is that, whenever an event (change of value) occurs on either A or B, the
expression on the right is evaluated and the value is scheduled to appear on signal Z after a delay of 9 ns.

Example 2: 1 bit Full adder
.

Two signal assignment statements are used to represent the dataflow of the FULL_ADDER entity. Whenever
an event occurs on signals A, B, or CIN, expressions of both the statements are evaluated and the value to
SUM is scheduled to appear after 15 ns while the value to COUT is scheduled to appear after 10 ns. The after
clause models the delay of the logic represented by the expression.

Concurrent versus Sequential Signal Assignment:

Concurrent signal assignment Sequential signal assignment
Signal assignment statements that appear outside of
a process are called concurrent signal assignment
statements.

Signal assignment statements that appear within
the body of a process statement are called
sequential signal assignment statements,

Concurrent signal assignment statements are event
triggered, that is, they are executed whenever there
is an event on a signal that appears in its expression
Example:
Architecture df of csa is
Begin
A<= b;
Z<= A;
End df;
When an event occurs on signal B at time T, signal
A gets the value of B after delta delay of Δ. The

Sequential signal assignment statements are not
event triggered and are executed in sequence in
relation to the other sequential statements that
appear within the process.
Example:
Architecture behavioral of ssa is
Begin
Process (B)
Begin
A<= b;
Z<= A;

1

entity OR2 is
 port (signal A, B: in BIT; signal Z: out BIT);
end OR2;

architecture data-flow of OR2 is
begin
Z <= A or B after 9 ns;
 End OR2;

entity FULL_ADDER is
port (A, B, CIN: in BIT; SUM, COUT: out BIT);
end FULL_ADDER;

architecture data-flow of FULL_ADDER is
begin

SUM <= (A xor B) xor CIN after 15 ns;
COUT <= (A and B) or (B and CIN) or (CIN and A)
 after 10 ns;

end FULL_ADDER

A ZCB

A

B

C

Z
20ns 20ns+1 ΔΔ Δ

simulation time advances and the signal A will get
the new value at T + Δ.
This new value of A will trigger the second signal
which will cause the new value of A to be assigned
to Z at the time T +2Δ.

End process;
End behavioral ;
Whenever signal B has an event, the first signal
assignment statement is executed and then the
second signal assignment statement is executed,
both in zero time. However, signal A is scheduled
to get its new value of B only at time T+Δ and Z is
scheduled to be assigned the old value of A (not the
value of B) at time T+Δ also.

Delta Delay Revisited
In a signal assignment statement, if no delay is specified or a delay of 0ns is specified, a delta delay is
assumed.
Example 1:

 entity FAST_INVERTER is
port (A: in BIT; Z: out BIT);
end FAST_INVERTER;

architecture DELTA_DELAY of FAST_INVERTER is
signal B, C: BIT;

begin
Z <= not C; - signal assignment #1
C <= not B; - signal assignment #2
B <= not A; - signal assignment #3

end DELTA_DELAY;
When an event occurs on signal A, say at 20 ns, the third signal assignment is triggered which causes

signal B to get the inverted value of A at 20ns+1Δ. When time advances to 20ns+1Δ, signal B changes. This
triggers the second signal assignment, causing signal C to get the inverted value of B at 20ns+2Δ. When
simulation time advances to 20ns+2Δ, the first signal assignment is triggered causing Z to get a new value at
time 20 ns+3Δ. Even though the real simulation time stayed at 20 ns, Z was updated with the correct value
through a sequence of delta-delayed events. This sequence of waveforms is shown below

2

B

C

Z

A

Example 2: RS latch

At start of simulation, both R and S have value'1' and Q and QBAR are at '1' and '0', respectively. When the
signal R changes from '1' to '0' at 5 ns. The following diagrams illustrate the event that occurs as a result of
change in the value of R. This shows that the output gets stabilized after two delta delays. The circuit
stabilizes with the final values of Q & Qbar being ‘0’ and ‘1’ respectively.

Multiple Drivers

Each concurrent signal assignment statement creates a driver for the signal being assigned. If the signal has
more than one driver then that signal is said to have multiple drivers.

For e.g.:

The effective value of Z is determined by using the user defined “Resolution Function”. This considers the
value of both the drivers for Z and determines the effective value. A signal with more than one driver must
have a resolution function associated with it, otherwise, it is an error. Such a signal is called a resolved signal

A resolution function consists of a function that is called whenever one of the drivers for the signals has an
event occurring on it. When the resolution function is executed it returns a single value from all the values of
the drivers. This is the new value of the signal.

3

entity md is
port (A, B, C: in BIT; Z: out BIT);

end md;
architecture df of md is
begin

Z <= A and B after 10 ns;
Z <= not C after 5 ns;
End df;

entity RS_LATCH is
port (R, S; in BIT := '1'; Q: buffer BIT := '1';
 QBAR: buffer BIT: = '0');
end RS_LATCH;

architecture DELTA of RS_LATCH is
begin

QBAR <= R nand Q;
Q <= S nand QBAR;

end DELTA;

S =1

R =1

QBAR

Q

5ns
5ns +1 5ns +2

Resolution
Function

Z

Driver 1

Driver 2

Driver3

Example: wired-OR, wired-AND, average value of a signal and so

Example:

Consider the following circuit.

In this case, there are three drivers for signal Z. Each driver has a sequence of transactions where each
transaction defines the value to appear on the signal and the time at which it is to appear. The resolution
function resolves the value for the signal Z from the current value of each of its drivers. This is shown
pictorially.

The value of each driver is an input to the resolution function and based on the computation performed
within the resolution function, the value returned by this function becomes the resolved value for the signal.

‘1’@10ns ‘0’ @5ns ‘1’@2ns

‘0’@20ns ‘1’ @5ns ‘0’@4ns

The resolution function is associated with the signal by specifying the name in the signal declaration. (signal
declaration could wired-or, wired and, average value etc.,) considering the wired-
OR operation for the above example, the correct way if representing it is

 entity md is
port (A, B, C,D,E: in BIT;
 Z: out wired-OR BIT);

end md;
architecture df of md is
begin

Z <= A and B after 10 ns;
Z <= not C after 5 ns;
Z <= A or B after 15 ns;

Z <= '1' after 2 ns, '0' after 5 ns, '1' after 10 ns;
Z <= '0' after 4 ns, '1' after 5 ns, '0' after 20 ns;
Z <= '1' after 10 ns, '0' after 20 ns;

4

entity md is
port (A, B, C,D,E: in BIT;
 Z: out BIT);
end md;

architecture df of md is
begin
Z <= A and B after 10 ns;
Z <= not C after 5 ns;
Z <= A or B after 15 ns;
End df;

Z <= '1' after 2 ns, '0' after 5 ns, '1' after 10 ns;
Z <= '0' after 4 ns, '1' after 5 ns, '0' after 20 ns;
Z <= '1' after 10 ns, '0' after 20 ns;

A
B

C

D
E

Z

A

‘0’ @20ns ‘1’@10ns

 End df;

In the example of architecture md, the resolution function is invoked at time 2 ns with driver values
'1', '0', and '0' (drivers 2 and 3 have '0' because that is assumed to be the initial value of Z). The function,
WIRED_OR, is performed and the resulting resolved value of '1' is assigned to Z at 2 ns. Signal Z is
scheduled to have another event at 4 ns, at which time the driver values, '1', '0', and '0', are passed to the
resolution function which returns the value of '1' for signal Z. At time 5 ns, the driver values, '0', '1', and '0'
are passed to the resolution function which returns the value '1'. At 10ns, the driver values, '1', '1', and '1' are
passed to the resolution function. Finally at time 20 ns, the driver values, '1', '0', and '0' are passed to the
resolution function to determine the effective value for signal Z, which is 1'.

Delay (ns) Driver 1 Driver 2 Driver 3 Z (Wired-AND) Z (Wired-OR)
2 1 0 0 0 1
4 0 0 0 0 0
5 0 1 0 0 1
10 1 0 1 0 1
20 0 0 0 0 0

There are two forms of the concurrent signal assignment statement: the conditional signal assignment
statement and the selected signal assignment statement.

 Conditional Signal Assignment Statement
The conditional signal assignment statement selects different values for the target signal based on the
specified, different, conditions. A typical syntax for this statement is

Target - signal <= [waveform-elements when condition else]
 [waveform-elements when condition else]
. . .
 waveform-elements;

That is, whenever an event occurs on a signal used either in any of the waveform expressions or in any of
the conditions, the conditional signal assignment statement is executed by evaluating the conditions one at a
time.
Example: Consider 4 x 1 mux.

5

Ctrl lines Inputs

S0 S1 I3 I2 I1 I0
0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

Encoder

In the example of data flow modeling, the statement is executed any time an event occurs on signals I0, I1,
I2, I3, S0, or S1. The first condition (S0='0' and S1='0') is checked; if false, the second condition (S0='1' and
S1='0') is checked; if false, the third condition is checked; and so on. Assuming S0='0' and S1='1', then the
value of IN2 is scheduled to be assigned to signal Y after 10 ns.

Selected Signal Assignment Statement:
The selected signal assignment statement selects different values for a target signal based on the value of a
select expression (it is like a case statement). The syntax for this statement is

with expression select — [This is the select expression].
 target-signal <= waveform-elements when choices,

waveform-elements when choices,
…

waveform-elements when choices ;

Whenever an event occurs on a signal in the select expression or on any signal used in any of the waveform
expressions, the statement is executed. The choices are not evaluated in sequence. All possible values of the
select expression must be covered by the choices that are specified not more than once. Values not covered
explicitly may be covered by an "others" choice.

Example:

Consider a 4 x 2 Encoder:

6

DATAFLOW MODELING

entity MUX is
port (I0,I1,I2,I3,S0,S1: in BIT;
 Y: out BIT);
end md;

 architecture df of MUX is
begin

Y <= I0 after 10ns when S0 = '0' and S1 = '0' else
 I1 after 10ns when S0 = '1' and S1 = '0' else
 I2 after 10ns when S0 = '0' and S1 = '1' else
 I3 after 10 ns;

NOTE: Refer manual for selected signal assignment for

MUX

BEHAVIORAL MODELING
entity MUX is
port (I: in BIT_vector (3 down to 0);
 S: in BIT_vector (1 down to 0)
 Y: out BIT);
end MUX;
 architecture behavioral of MUX is
begin
process
begin

if S0 = '0' and S1 = '0' then
Y<= I0 after 10 ns;
Elsif S0='1'and S1='0' then
Y<= I1 after 10ns;
Elsif S0='0' and S1 = '1' then
Y<= I2 after 10 ns;
else Y<= I3 after 10 ns;

end if;
wait on I0, I1, I2, I3, S0, S1;
end process;

end behavioral;

Inputs Outputs

I3 I2 I1 I0 Y1 Y0
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1

entity encoder is
port (I: in std_logic_vector(3 down to 0);
 Z: out std_logic_vector(1down to 0);
End encoder;
Architecture df of encoder is
Begin
With I select
Y<= “00” when “0001”,
 “01” when “0010”,
 “10” when “0100”,
 “11” when “1000”,
 “00” when others;
End df;

Block Statement:

A block statement is a concurrent statement. There are two types of block statement –
1. Simple block
2. Guarded block

Simple BLOCK
The BLOCK statement, in its simple form, represents only a way of locally partitioning the code. It

allows a set of concurrent statements to be clustered into a BLOCK, with the purpose of turning the overall
code more readable and more Manageable.
Its syntax is shown below.

label: BLOCK
[Declarative part]

BEGIN
(concurrent statements)

END BLOCK label;

Guarded BLOCK
A guarded BLOCK is a special kind of BLOCK, which includes an additional expression, called

guard expression. A guarded statement in a guarded BLOCK is executed only when the guard expression is
TRUE.

Guarded BLOCK:
label: BLOCK (guard expression)

[declarative part]
BEGIN

(concurrent guarded and unguarded statements)
END BLOCK label;

Example: D- flip-flop. with a Guarded BLOCK

In it, clk='1' is the guard expression, while q<=GUARDED d is a guarded statement.
Therefore, q<=d will only occur if clk='1'.

entity D_FLIP_FLOP is
port (D, CLK: in BIT; Q, QBAR: out BIT);

end D_FLIP_PLOP;
architecture DFF of D_FLIP_FLOP is
begin

7

Conditional signal assignment

Y <= “00” when I “0001” else ,

 “01” when I “0010” else,

 “10” when I “0100” else,

 “11” when I “1000” else,

 “00” when others;

b1: BLOCK (clk='1')
begin

q <= GUARDED D;
end block b1;

end DFF;

Concurrent Assertion Statement:
 A concurrent assertion statement has exactly the same syntax as a sequential assertion statement assertion
statement. The semantics of a concurrent assertion statement are as follows. Whenever an event occurs on a
signal in the Boolean expression of the assertion statement, the statement is executed.
Example: Consider SR Flip-flop.

entity SR is
port (S, R: in BIT; Q, NOTQ: out BIT);

end SR;
architecture df of SR is
begin

assert (not(S = '0' and R = '0'))
report "Not valid inputs: R and S are both low"
severity ERROR;
end df;

Anytime an event occurs on either of the signals, S or R, the assertion statement is executed and the Boolean
expression checked. If false, the report message is printed and the severity level is reported to the simulator
for appropriate action.

The unaffected value:
It is possible to assign a value of unaffected to a signal in a concurrent signal assignment statement. Such an
assignment causes no change to the driver for the target signal.

Example: Consider 4 x 2 Encoder.

 entity encoder is
port (I: in std_logic_vector(3 down to 0);
 Z: out std_logic_vector(1down to 0);
End encoder;

Architecture beh of encoder is
Begin
With I select

Y<= “00” when “0001”,
 “01” when “0010”,
 “10” when “0100”,
 “11” when “1000”,
 “00” when others; (unaffected when others.)
End beh;

Value of a signal

A signal gets its value from its drivers. Every concurrent signal assignment statements create a driver for the
target signal. All signal assignments in a process that assign to a particular signal create one driver for the
signals.

8

In a given VHDL description, if a signal has more than one driver, the resolution function is necessary. This
function is associated with the current value of all drivers for a signal and the return value of the function
becomes the effective value of the signal.

9

Structural Modeling

Structural modeling is the simplest style of modeling. It describes the circuit design in terms of

components. In this style of modeling, the top-level entity is partitioned into smaller lower level entities,

each of which is known as the component.

Every component in VHDL is specified with its component declaration and mapped to top-level entity

using component instantiation.

Component Declaration

Any entity before using the components is required to declare the components in the architecture –
declarative section. The syntax of a simple form of component declaration is

component component-name
port (list-of-interface-ports) ;

end component;

Example 1:

component NAND2
port (A, B: in MVL; Z: out MVL);

end component;

Example 2:

component MP
port (CK, RESET, RD, WR: in BIT;

DATA_BUS: inout INTEGER range 0 to 255;
ADDR_BUS: in BIT_VECTOR(15 downto 0));

end component;
Example 3:

component AND2
port (X, Y: in BIT: Z: out BIT):
end component;

Example 4:

component DFF
port (D, CLOCK: in BIT; Q, QBAR: out BIT);
end component;

Example 5

component NOR2
port (A, B: in BIT; Z: out BIT);
end component;

Component Instantiation:

Component instantiation is creating an instance of the specific component by associating its local ports
to signals of the top-level entity. It puts the components used in the executable form for the top-level

1

entity. PORT MAP statement is used for component instantiation. A format of a component
instantiation statement is

Component-label: component-name port map (association-list) ',

 The component-label can be any legal identifier
 The component-name must be the name of a component declared earlier using a component

declaration.
 The association-list associates signals in the entity, called actuals, with the ports of a component,

called formals .
 An actual may be a signal. An actual for an input port may also be an expression. Actual may also

be the keyword OPEN to indicate a port that is not connected.

There are two ways to perform the association.

1. Positional association,
 2. Named association.

In positional association , an association-list is of the form

actual1, actual2, actual3. . . actual
Each actual in the component instantiation is mapped by position with each port in the component
declaration. That is, the first port in the component declaration corresponds to the first actual in the
component instantiation, the second with the second, and so on.

Example1:
-- Component declaration:

component nandg
port (U, V in BIT; W: out BIT);

end component;

-- Component instantiation:
G1 : nandg port map (A, B, S1);
G2 : nandg port map (C, D, S2);
G1 : nandg port map (S1,S2, S3);

G1, G2 & G3 are the component label for the current instantiation of the nandg component. The
ordering of the actual is not important. Here S1 is actual and Y is the formal.
If a port in a component instantiation is not connected to the any signal, the keyword OPEN can be used
to specify that the port is not connected.

Example 2:

2

U

D

Clk

Q

QBar

RDY

CTRL A

MR

DIN

S1

S22

G1 : JKFF port map (1,1,CLK,QA,OPEN);
G2 : JKFF port map (1,1,QA,QB,OPEN);

In named association, an association-list is of the form

formal => actual1, formal2 => actual2, ..., formaaln => actualn

Example:

Component norg
Port (DA,DB: IN BIT;
 DZ : OUTBIT);
End component;

Component andg
Port (x,y : IN BIT;
 z : OUTBIT);
End component;

Component DFF
Port (D,clk : IN BIT;
 Q, Qbar : OUTBIT);
End component;
G1 : DFF portmap (D =>A, clk=>clk, Q=> S1, QBAR => S2);
G2 : norg port map (DA => MR, DB => S1, DZ => RDY);
G3 : Andg port map (x => S2, y => Din , Z => CTRLA);

In this case considering G2, MR is an actual which is declared in the entity port list is associated with the
first port (port DA, a formal) of the norg gate, signal ready is associated with the third port (DZ) and S1 is
associated with the second port (DB of norg gate.)

 If an actual is a port of mode in, it may not be associated with mode of out or inout.

 If an actual is a port of mode out , it may not be associated with mode of in or inout
 If an actual is a port of mode inout, it may be associated with mode of in, out or inout

 In named association, the ordering of the associations is not important since the mapping between the

actuals and formals are explicitly specified.

The signals used to interconnect components can also be
• Slices,

3

A

Clk

Q

QBar

RDY

CTRL A

MR

DIN

S1

S22

D

Clk

• Vectors, or,
• Array elements.

Write the VHDL code in structural modelling for the following circuit.

entity GATING is
port (A, CK, MR, DIN: in BIT; RDY, CTRLA: out BIT);
end GATING;
architecture STRUCTURE_VIEW of GATING is

component AND2
port (X, Y: in BIT; Z: out BIT);
end component;

component DFF
port (D, CLOCK: in BIT; Q, QBAR: out BIT);
end component;

component NOR2
port (A, B: in BIT; Z: out BIT);
end component;
signal SI, S2: BIT;

begin
D1: DFF port map (A, CK, SI, S2);
A1: AND2 port map (S2, DIN, CTRLA);
N1: NOR2 port map (SI, MR, RDY);

end STRUCTURE_VIEW;

Three components, AND2, DFF, and NOR2, are declared. These components are instantiated in the
architecture body via three component instantiation statements, and the instantiated components are
connected to each other via signals SI and S2. The component instantiation statements are concurrent
statements, and therefore, their order of appearance in the architecture body is not important. A
component can, in general, be instantiated any number of times. However, each instantiation must have a
unique component label; as an example, A1 is the component label for the AND2 component
instantiation.

Other Examples

Ex 1: The structural model for a 9-bit parity generator circuit is as shown below.

4

J

K

CK

NQ

Q J

K

CK

NQ

Q J

K

CK

NQ

Q J

K

CK

NQ

Q

S1
Cout

entity PARITY_9_BIT is
port (D: in BIT_VECTOR(8 downto 0); EVEN: out BIT;

ODD: buffer BIT);
end PARITY_9_BIT;
architecture structural of PARITY_9_BIT is

component XOR2
port (A, B: in BIT; Z: out BIT);
end component;
component INV2
port (A: in BIT; Z: out BIT);
end component;
signal E0, E1, E2, E3, F0, F1, H0: BIT;

begin
XE0: XOR2 port map (D(0), D(1), E0);
XE1: XOR2 port map (D(2), D(3), E1);
XE2: XOR2 port map (D(4), D(5), E2);
XE3: XOR2 port map (D(6), D(7), E3);
XF0: XOR2 port map (E0, E1, F0);
XF1: XOR2 port map (E2, E3, F1);
XH0: XOR2 port map (F0, F1, H0);
XODD: XOR2 port map (H0, D(8), ODD);
XEVEN: INV2 port map (ODD, EVEN);

end structural;
In this example, port ODD is of mode buffer since the value of this port is being read as well as written to
inside the architecture.

Ex 2: The structural model for decade counter using J-K flip - f lops is as shown
below.

5

S2

Z (0) Z (1) Z (2) Z (3)

J

K

CK

NQ

Q J

K

CK

NQ

Q J

K

CK

NQ

Q

entity decade is
port (COUNT: in BIT; Z: buffer BIT_VECTOR(0 to 3));

end decade;
architecture structural of decade is

component JK_FF
port (J, K, CK: in BIT; Q, NQ: buffer BIT);

end component;
component andg

port (A, B: in BIT; C: out BIT);
end component;
signal S1, S2: BIT;
signal S_HIGH: BIT := '1';

begin
A1: AND_GATE port map (Z(2), Z(1), S1);
G1: JK_FF port map (1, 1, COUNT, Z(0), open);
G2: JK_FF port map (S2, 1, Z(0), Z(1), open);
G3: JK_FF port map (1, 1, Z(1), Z(2), open);
G4: JK_FF port map (S1, 1, Z(0), Z(3), S2);

end structural;
This example illustrates the point that only signals can be used as actuals inside a port map. If a
constant, say 'V, is to be set for one of the ports, as in instance JKI, it is necessary to define a signal, say
S_HIGH, that contains this value and then use this signal as an actual for this port. It would be an error to
use the constant value directly as an actual in a port map.

Ex 3: Consider the 3-bit up-down counter circuit shown below and its structural model

entity UP_DOWN is
port (CLK, CNT_UP, CNT_DOWN: in BIT;
A, B, C: buffer BIT);

end UP_DOWN;
architecture structural of UP_DOWN is

component JK_FF
port (J, K, CK: in BIT; 0, ON: buffer BIT);

end component;
component AND2

6

port (A, B: in BIT; C: out BIT);
end component;

component OR2
port (A, B: in BIT; C: out BIT);

end component;
signal SI, S2, S3, S4, S5, S6, S7, S8: BIT;
signal ONE: BIT := '1';

begin
JK1: JK_FF port map (1, 1, CLK, A, S1);
A1: AND2 port map (CNT_UP, A, S2);
A2: AND2 port map (S1, CNT_DOWN, S3);
O1: OR2 port map (S2, S3, S4);
JK2: JK_FF port map (1, 1, S4, B, S5);
A3; AND2 port map (B, CNT_UP, S7);
A4: AND2 port map (S5, CNT_DOWN, S6);
O2: OR2 port map (S7, S6, S8);
JK3: JK_FF port map (1, 1, S8, C, open):

end structural;

Resolving Signal Values
If outputs of two components drive a common signal, then the value of the signal must be resolved
using a resolution function. For example, consider the circuit shown below that shows two and gates
driving a common signal, RSI, which is inverted to produce the result in Z.

entity DRIVING_SIGNAL is
port (A, B, C, D: in BIT; Z: out BIT);

end DRIVING_SIGNAL;
 {-- PULL_UP is the name of a function defined in package RF_PACK that

 -- has been compiled into the working library}

 use WORK.RF_PACK.PULL_UP;

architecture RESOLVED of DRIVING_SIGNAL is
signal RS1: PULL_UP BIT;
component AND2

port (IN1, IN2: in BIT; OUT1: out BIT);
end component;
component INV

port (X: in BIT; Y: out BIT);
end component;

begin
A1: AND2 port map (A, B, RS1);

7

A2: AND2 port map (C, D, RS1);
I1: INV port map (RS1, Z);

end RESOLVED;
The key point here is that even though an assignment to signal RSI is not being made explicitly using
signal assignment statements, the signal RSI is being driven by two output ports, and therefore, must be
resolved using a resolution function. In the previous example, the PULL_UP resolution function is
associated with signal RSI. This implies that the values of the outputs of the and gates are passed
through the resolution function before a value is assigned to signal RSI. In general, each out, inout, and
buffer port of a component creates a driver for the signal with which it is associated.

1. Structural model for HALF ADDER
Entity HA_S is
 Port (a, b : in STD_LOGIC;
 s : out STD_LOGIC ;
 c : out STD_LOGIC);
end HA_S;

Architecture Structural of HA_S is

component XORgate
port (x,y : in STD_LOGIC; z : out STD_LOGIC);

end component;
component ANDgate

port (x,y : in STD_LOGIC; z : out STD_LOGIC);
end component;

begin
G1 : XORgate port map (a,b,s);
G2 : ANDgate port map (a,b,c);

end Structural;

2. Structural model for FULL ADDER
Entity FA_S is
 Port (a b, c : in STD_LOGIC;
 s : out STD_LOGIC;
 Cout : out STD_LOGIC
end FA_S;
Architecture Structural of FA_S is
component HA

port (w,x : in STD_LOGIC;
 y,z : out STD_LOGIC);

end component;
component ORgate

port (x,y : in STD_LOGIC;
 z : out STD_LOGIC);
end component;

signal s1,c1,c2 : STD_LOGIC;
begin
G1 : HA port map (a,b,s1,c1);
G2 : HA port map (s1,c,s,c2);
G3 : ORgate port map (c1,c2,ca);

8

end Structural;

3. Structural model for HALF SUBTRACTOR

Entity HS_S is
 Port (a, b : in STD_LOGIC;
 d, ba : out STD_LOGIC);
end HS_S;

architecture Structural of HS_S is
component XORgate

port (x,y : in STD_LOGIC; z : out STD_LOGIC);
end component;

component NOTgate
port (x : in STD_LOGIC; y : out STD_LOGIC);

end component;

component ANDgate
port (x,y : in STD_LOGIC; z : out STD_LOGIC);

end component;

signal x1 : STD_LOGIC;

begin
G1 : XORgate port map (a,b,d);
G2 : NOTgate port map (a,x1);
G3 : ANDgate port map (x1,b,ba);

end Structural;

4. Structural model for FULL SUBTRACTOR

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity FS_S is
 Port (a : in STD_LOGIC;
 b : in STD_LOGIC;
 c : in STD_LOGIC;
 d : out STD_LOGIC;
 ba : out STD_LOGIC);
end FS_S;

architecture Structural of FS_S is
component HS

port (w,x :in STD_LOGIC; y,z : out STD_LOGIC);

9

end component;

component ORgate
port (x,y :in STD_LOGIC; z : out STD_LOGIC);

end component;

signal ba1,ba2,d1 : STD_LOGIC;

begin

G1 : HS port map (a,b,d1,ba1);
G2 : HS port map (d1,c,d,ba2);
G3 : ORgate port map (ba1,ba2,ba);

end Structural;

10

	b. Integer Types
	An integer type defines all integer values whose set of values fall within the specified range. The values can be positive or negative. The range of the INTEGER type is in the range -(2^ 31 - 1) to +(2^31 - 1).
	c. Floating Point (Real) Types:
	A composite type represents a collection of values of similar or different type. There are two types:
	An array type and
	A record type.
	2a. Array types:
	Array is used to represent an object containing more than one values of similar type. For example, a register of eight bits can be represented as an object of the type array consisting of eight-bit values. So, eight values of type bit are grouped into a single object of the type array.
	Example:
	2b. Record Types

