JSS COLLEGE OF ARTS, COMMERCE AND SCIENCE

Autonomous under University of Mysore Re-accredited by NAAC with 'A' Grade, CGPA: 3.21 Recognized by UGC as 'College with Potential for Excellence'

ALGEBRA II B.Sc III SEM

Prepared By
Asha H M
Asst. Professor
Department of Mathematics
JSS of Arts, Commerce and Science, Mysuru

DEPARTMENT OF MATHEMATICS

Chapter 1

Rings

1.1 Rings and homomorphisms

Let \mathcal{R} be a ring. We have an object $(\mathcal{R},+,-,\cdot)$. This object contains a set with 3 operations. The operations are maps from $\mathcal{R}x\mathcal{R} \to \mathcal{R}$. The subset $(\mathcal{R},+)$ is a commutative group, and the subset (\mathcal{R},\cdot) is a semi-group or monoid. In the ring there is an element 0 such that 0x = x0 = 0 for all x in \mathcal{R} . In the ring there is also an identity element 1, with the property that 1x = x1 = x for all x in \mathcal{R} . The ring \mathcal{R} also satisfies a distribution law with respect to the operations of addition and subtraction.

Examples of rings:

- 1. \mathbb{Z} , \mathbb{Q} , \mathbb{R} , C (note \mathbb{Q} , \mathbb{R} , and \mathbb{C} are fields);
- 2. $\mathbb{Z}[x]$, $\mathbb{Q}[x]$, $\mathbb{R}[x]$, $\mathbb{C}[x]$

Definition 1.1.1. If \mathcal{R} is a commutative ring, then $\mathcal{R}[x]$ is the ring of polynomials over \mathcal{R} :

$$\mathcal{R}[x] = \{ \sum_{i=1}^{n} a_i x^i \mid a_i \in \mathcal{R}, \text{ with operations } +, -, \text{ and } \cdot \}$$

Definition 1.1.2. Let \mathcal{R}_1 , \mathcal{R}_2 be two rings. A homomorphism from \mathcal{R}_1 to \mathcal{R}_2 is a map

$$\phi: \mathcal{R}_1 \to \mathcal{R}_2$$

which preserves the operations:

$$\phi(x+y) = \phi(x) + \phi(y), \qquad \phi(xy) = \phi(x)\phi(y)$$

Definition 1.1.3. The kernel of a homomorphism $\phi : \mathcal{R}_1 \to \mathcal{R}_2$ is defined to be the preimage of 0 and its denoted by $\text{Ker}(\phi)$.

$$Ker(\phi) = \phi^{-1}(0) = \{ x \in \mathcal{R} \mid \phi(x) = 0 \}$$

Note that $Ker(\phi)$ measures the injectivity of ϕ .

Lemma 1.1.4. The homomorphism ϕ is injective if and only if $\ker \phi = 0$.

Proof. The only if part is obvious. If $\phi(x_1) = \phi(x_2)$ then $\phi(x_1 - x_2) = 0$ so $x_1 - x_2 = 0$.

The homomorphism ϕ can be factorized as a composition of surjective map and an injective map

$$\mathcal{R}_1 \xrightarrow[\text{onto}]{\phi} \phi(\mathcal{R}_1) \hookrightarrow \mathcal{R}_2$$

The image $\phi(\mathcal{R}_1)$ is a *subring* of \mathcal{R}_2 , while it is a *quotient ring* of \mathcal{R}_1 .

Some notations

- Surjective map: --
- injective map: \hookrightarrow or \rightarrowtail

1.2 Ideals and quotients

Now we want to study the structure of $\ker \phi$. Let $\ker \phi = I$.

Property 1 If $x \in I$ and $y \in I$ then $x + y \in I$. Thus I is an Abelian subgroup of \mathcal{R} under addition.

Property 2 If $x \in \mathcal{R}$ and $y \in I$ then $xy \in I$. Indeed

$$\phi(xy) = \phi(x)\phi(y) = 0.$$

Note that if $1 \in I$, then $\phi(1) = 0$ which implies

$$\phi(x) = \phi(x1) = 0$$

for all $x \in \mathcal{R}$. Thus for the most part, we assume

Property 3 1 is not in I

Definition 1.2.1. Let $I \hookrightarrow \mathcal{R}$ be a subset. We say I is an ideal if I satisfies two properties:

- 1. $x \in I, y \in I$ implies $x + y \in I$
- 2. $x \in I, y \in \mathcal{R}$ implies $xy \in I$

Theorem 1.2.2. A subset I of \mathcal{R} is the kernel of a homomorphism $\phi : \mathcal{R} \to \mathcal{R}'$, if and only if I is an ideal.

Here is some machinery to start: Let \mathcal{R}' denote the quotient R/\sim of R modulo the relation \sim : where

$$x_1 \sim x_2$$
 if and only if $x_1 - x_2 \in I$.

Step 1. Show this is an equivalence: indeed,

$$x_1 - x_2 \in I$$
, $x_2 - x_3 \in I$, then $x_1 - x_3 \in I$.

Notation: let $x \in \mathcal{R}$. The class of x in \mathcal{R}' is denoted by x + I or $x \pmod{I}$.

Step 2. Define addition and multiplication on \mathcal{R}' :

$$(x_1 \pmod{I}) + (x_2 \pmod{I}) = (x_1 + x_2) \pmod{I}$$

 $(x_1 \pmod{I})(x_2 \pmod{I}) = x_1x_2 \pmod{I}$

Step 3. Show \mathcal{R}' is a ring.

Step 4. Define a map

$$\phi: \mathcal{R} \to \mathcal{R}', \quad \phi(x) = x \pmod{I}.$$

Show ϕ is a homomorphism and $\ker \phi = I$.

1.3 Special ideals and rings

We want to introduce some special ideals and rings through study of examples: \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{Z}[x]$, $\mathbb{Q}[x]$, $\mathbb{R}[x]$, $\mathbb{C}[x]$.

Fields

Let $I \hookrightarrow \mathbb{Q}$ be an ideal. If I is non-zero, then there is some non-zero element $a \in I$. If $a \in I$, then $a^{-1} \in I$, so $aa^{-1} = 1 \in I$. Thus the only ideal in \mathbb{Q} not containing 1, is the zero ideal. This leads us to the following definition:

Definition 1.3.1. A *Field* is a ring whose only ideal is the zero ideal.

Another definition could be:

Definition 1.3.2. A *Field* is a ring in which every non-zero element is invertible. That is for all $x \in \mathcal{R}$ there exists $y \in \mathcal{R}$ such that xy = 1.

The equivalence of these two definitions is easy to see. If there were some non-zero element $x \in \mathcal{R}$ that was not invertible, then (x) will be non-zero and $(x) \neq \mathcal{R}$. If every non-zero element of \mathcal{R} is invertible then clearly the only ideal of \mathcal{R} is the zero ideal.

It is clear that \mathbb{R} and \mathbb{C} are also fields.